These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1668801)

  • 1. Removal of the 2.2.2 cryptand (Kryptofix 2.2.2) from 18FDG by cation exchange.
    Alexoff DL; Fowler JS; Gatley SJ
    Int J Rad Appl Instrum A; 1991; 42(12):1189-93. PubMed ID: 1668801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of contaminant Kryptofix 2.2.2 in the routine production of 2-[18F]fluoro-2-deoxy-D-glucose.
    Moerlein SM; Brodack JW; Siegel BA; Welch MJ
    Int J Rad Appl Instrum A; 1989; 40(9):741-3. PubMed ID: 2559062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin layer chromatographic detection of kryptofix 2.2.2 in the routine synthesis of [18F]2-fluoro-2-deoxy-D-glucose.
    Chaly T; Dahl JR
    Int J Rad Appl Instrum B; 1989; 16(4):385-7. PubMed ID: 2777579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct analysis of Kryptofix 2.2.2 in 18FDG by gas chromatography using a nitrogen-selective detector.
    Ferrieri RA; Schlyer DJ; Alexoff DL; Fowler JS; Wolf AP
    Nucl Med Biol; 1993 Apr; 20(3):367-9. PubMed ID: 8485498
    [No Abstract]   [Full Text] [Related]  

  • 5. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Morel F; Lehn JM
    J Membr Biol; 1986; 89(3):251-67. PubMed ID: 3701842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A color spot test for the detection of Kryptofix 2.2.2 in [18F]FDG preparations.
    Mock BH; Winkle W; Vavrek MT
    Nucl Med Biol; 1997 Feb; 24(2):193-5. PubMed ID: 9089712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Lehn JM
    J Membr Biol; 1987; 97(2):79-95. PubMed ID: 3446819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple rapid hydrolysis of acetyl protecting groups in the FDG synthesis using cation exchange resins.
    Mulholland GK
    Nucl Med Biol; 1995 Jan; 22(1):19-23. PubMed ID: 7735165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study of the cryptand and benzocryptand and their complexes with alkali metal cations: Li+, Na+, K+.
    Wang X; Wang H; Tan Y
    J Comput Chem; 2008 Jul; 29(9):1423-8. PubMed ID: 18270963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Back-to-back "one-pot" [18F]FDG syntheses in a single Siemens-CTI chemistry process control unit.
    Mock BH; Vavrek MT; Mulholland GK
    Nucl Med Biol; 1996 May; 23(4):497-501. PubMed ID: 8832706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential extraction--spectrofluorometric determination of lead and cadmium using cryptands.
    Gomis DB; Garcia EA
    Analyst; 1990 Jan; 115(1):89-91. PubMed ID: 1692195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of residual Kryptofix 2.2.2 levels in [18F]-labeled radiopharmaceuticals for human use.
    Scott PJ; Kilbourn MR
    Appl Radiat Isot; 2007 Dec; 65(12):1359-62. PubMed ID: 17582776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Kryptofix 2.2.2 in [18F]fluorine-labelled radiopharmaceuticals by rapid-resolution liquid chromatography.
    Lao Y; Yang C; Zou W; Gan M; Chen P; Su W
    Nucl Med Commun; 2012 May; 33(5):498-502. PubMed ID: 22330082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous analysis of FDG, ClDG and Kryptofix 2.2.2 in [18F]FDG preparation by high-performance liquid chromatography with UV detection.
    Nakao R; Ito T; Yamaguchi M; Suzuki K
    Nucl Med Biol; 2008 Feb; 35(2):239-44. PubMed ID: 18312835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of repeated administration of various chelating agents on the removal of strontium from the mouse.
    Colomina T; Llobet JM; Domingo JL; Corbella J
    Vet Hum Toxicol; 1991 Apr; 33(2):121-4. PubMed ID: 1903571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental applications of a cryptand adjustable-capacity anion-exchange separator.
    Woodruff A; Pohl CA; Bordunov A; Avdalovic N
    J Chromatogr A; 2003 May; 997(1-2):33-9. PubMed ID: 12830874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na/K competitive transport selectivity of (221)C10-cryptand: effects of pH and carrier concentration.
    Loiseau A; Hill M; Mulliert G; Castaing M
    Biochim Biophys Acta; 1995 Apr; 1235(1):21-32. PubMed ID: 7718604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural study of a manganese(II) 'picket-fence' porphyrin complex.
    Yu Q; Li X; Liu D; Li J
    Acta Crystallogr C Struct Chem; 2015 Jul; 71(Pt 7):545-8. PubMed ID: 26146391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal titration calorimetry study of a bistable supramolecular system: reversible complexation of cryptand[2.2.2] with potassium ions.
    del Rosso MG; Ciesielski A; Colella S; Harrowfield JM; Samorì P
    Chemphyschem; 2014 Sep; 15(13):2743-8. PubMed ID: 24986754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term studies with the cryptating agent hexaoxa-diaza-bicyclo-hexacosane in rats.
    Baumann M; Schäffer E; Greim H
    Arch Toxicol Suppl; 1984; 7():427-9. PubMed ID: 6596011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.