These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 16688177)

  • 21. AGO18b negatively regulates determinacy of spikelet meristems on the tassel central spike in maize.
    Sun W; Xiang X; Zhai L; Zhang D; Cao Z; Liu L; Zhang Z
    J Integr Plant Biol; 2018 Jan; 60(1):65-78. PubMed ID: 28875539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. barren inflorescence2 regulates axillary meristem development in the maize inflorescence.
    McSteen P; Hake S
    Development; 2001 Aug; 128(15):2881-91. PubMed ID: 11532912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.
    Yoshida A; Ohmori Y; Kitano H; Taguchi-Shiobara F; Hirano HY
    Plant J; 2012 Apr; 70(2):327-39. PubMed ID: 22136599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries.
    Chuck G; Whipple C; Jackson D; Hake S
    Development; 2010 Apr; 137(8):1243-50. PubMed ID: 20223762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of selection at the ramosa1 locus during maize domestication.
    Sigmon B; Vollbrecht E
    Mol Ecol; 2010 Apr; 19(7):1296-311. PubMed ID: 20196812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sporisorium reilianum infection changes inflorescence and branching architectures of maize.
    Ghareeb H; Becker A; Iven T; Feussner I; Schirawski J
    Plant Physiol; 2011 Aug; 156(4):2037-52. PubMed ID: 21653782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crop reproductive meristems in the genomic era: a brief overview.
    Caselli F; Zanarello F; Kater MM; Battaglia R; Gregis V
    Biochem Soc Trans; 2020 Jun; 48(3):853-865. PubMed ID: 32573650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of auxin in shaping shoot architecture.
    Gallavotti A
    J Exp Bot; 2013 Jun; 64(9):2593-608. PubMed ID: 23709672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize.
    Thompson BE; Basham C; Hammond R; Ding Q; Kakrana A; Lee TF; Simon SA; Meeley R; Meyers BC; Hake S
    Plant Cell; 2014 Dec; 26(12):4702-17. PubMed ID: 25465405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems.
    Zhu Y; Wagner D
    Cold Spring Harb Perspect Biol; 2020 Jan; 12(1):. PubMed ID: 31308142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
    Carles CC; Choffnes-Inada D; Reville K; Lertpiriyapong K; Fletcher JC
    Development; 2005 Mar; 132(5):897-911. PubMed ID: 15673576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize.
    Barazesh S; McSteen P
    Genetics; 2008 May; 179(1):389-401. PubMed ID: 18493061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes.
    Shima S; Matsui H; Tahara S; Imai R
    FEBS J; 2007 Mar; 274(5):1192-201. PubMed ID: 17257172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae).
    Wu X; McSteen P
    Am J Bot; 2007 Nov; 94(11):1745-55. PubMed ID: 21636370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the regulation of inflorescence architecture.
    Teo ZW; Song S; Wang YQ; Liu J; Yu H
    Trends Plant Sci; 2014 Mar; 19(3):158-65. PubMed ID: 24315403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation.
    Sun Y; Dong L; Kang L; Zhong W; Jackson D; Yang F
    Mol Plant; 2024 Jul; 17(7):1019-1037. PubMed ID: 38877701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tassel-less1 encodes a boron channel protein required for inflorescence development in maize.
    Leonard A; Holloway B; Guo M; Rupe M; Yu G; Beatty M; Zastrow-Hayes G; Meeley R; Llaca V; Butler K; Stefani T; Jaqueth J; Li B
    Plant Cell Physiol; 2014 Jun; 55(6):1044-54. PubMed ID: 24685595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition.
    Pautler M; Tanaka W; Hirano HY; Jackson D
    Plant Cell Physiol; 2013 Mar; 54(3):302-12. PubMed ID: 23411664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions.
    Nuccio ML; Wu J; Mowers R; Zhou HP; Meghji M; Primavesi LF; Paul MJ; Chen X; Gao Y; Haque E; Basu SS; Lagrimini LM
    Nat Biotechnol; 2015 Aug; 33(8):862-9. PubMed ID: 26473199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize.
    Yao H; Skirpan A; Wardell B; Matthes MS; Best NB; McCubbin T; Durbak A; Smith T; Malcomber S; McSteen P
    Mol Plant; 2019 Mar; 12(3):374-389. PubMed ID: 30690173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.