BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 16688178)

  • 1. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency.
    Kontos H; Napthine S; Brierley I
    Mol Cell Biol; 2001 Dec; 21(24):8657-70. PubMed ID: 11713298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal pausing during translation of an RNA pseudoknot.
    Somogyi P; Jenner AJ; Brierley I; Inglis SC
    Mol Cell Biol; 1993 Nov; 13(11):6931-40. PubMed ID: 8413285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic control of -1 programmed ribosomal frameshifting.
    Bock LV; Caliskan N; Korniy N; Peske F; Rodnina MV; Grubmüller H
    Nat Commun; 2019 Oct; 10(1):4598. PubMed ID: 31601802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ribosomal pausing during programmed -1 translational frameshifting.
    Lopinski JD; Dinman JD; Bruenn JA
    Mol Cell Biol; 2000 Feb; 20(4):1095-103. PubMed ID: 10648594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.
    Plant EP; Jacobs KL; Harger JW; Meskauskas A; Jacobs JL; Baxter JL; Petrov AN; Dinman JD
    RNA; 2003 Feb; 9(2):168-74. PubMed ID: 12554858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation.
    Demo G; Gamper HB; Loveland AB; Masuda I; Carbone CE; Svidritskiy E; Hou YM; Korostelev AA
    Nat Commun; 2021 Jul; 12(1):4644. PubMed ID: 34330903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting.
    Lin Z; Gilbert RJ; Brierley I
    Nucleic Acids Res; 2012 Sep; 40(17):8674-89. PubMed ID: 22743270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic pathways of -1 translational frameshifting.
    Chen J; Petrov A; Johansson M; Tsai A; O'Leary SE; Puglisi JD
    Nature; 2014 Aug; 512(7514):328-32. PubMed ID: 24919156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of tRNA-mediated +1 ribosomal frameshifting.
    Hong S; Sunita S; Maehigashi T; Hoffer ED; Dunkle JA; Dunham CM
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11226-11231. PubMed ID: 30262649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
    Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N
    Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamical model of programmed -1 ribosomal frameshifting.
    Xie P
    J Theor Biol; 2013 Nov; 336():119-31. PubMed ID: 23911574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot.
    Chen YT; Chang KC; Hu HT; Chen YL; Lin YH; Hsu CF; Chang CF; Chang KY; Wen JD
    Nucleic Acids Res; 2017 Jun; 45(10):6011-6022. PubMed ID: 28334864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
    Ritchie DB; Foster DA; Woodside MT
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16167-72. PubMed ID: 22988073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy landscape of -1 ribosomal frameshifting.
    Choi J; O'Loughlin S; Atkins JF; Puglisi JD
    Sci Adv; 2020 Jan; 6(1):eaax6969. PubMed ID: 31911945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting.
    Poulis P; Patel A; Rodnina MV; Adio S
    Nat Commun; 2022 Jul; 13(1):4231. PubMed ID: 35869111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.