These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16688560)
1. Uptake of cadmium by different cultivars of Brassica pekinens (Lour.) Rupr. and Brassica chinensis L. and their potential for phytoremediation. Liu CP; Shen ZG; Li XD Bull Environ Contam Toxicol; 2006 Apr; 76(4):732-9. PubMed ID: 16688560 [No Abstract] [Full Text] [Related]
2. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. Liu W; Zhou Q; Zhang Z; Hua T; Cai Z J Agric Food Chem; 2011 Aug; 59(15):8324-30. PubMed ID: 21739993 [TBL] [Abstract][Full Text] [Related]
3. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
4. Effects of chloride and co-contaminated zinc on cadmium accumulation within Thlaspi caerulescens and durum wheat. Liu Q; Tjoa A; Römheld V Bull Environ Contam Toxicol; 2007 Jul; 79(1):62-5. PubMed ID: 17599229 [No Abstract] [Full Text] [Related]
5. Cadmium and other metal uptake by Lobelia chinensis and Solanum nigrum from contaminated soils. Peng KJ; Luo CL; Chen YH; Wang GP; Li XD; Shen ZG Bull Environ Contam Toxicol; 2009 Aug; 83(2):260-4. PubMed ID: 19290449 [TBL] [Abstract][Full Text] [Related]
6. Selection for Cd Pollution-Safe Cultivars of Chinese Kale (Brassica alboglabra L. H. Bailey) and Biochemical Mechanisms of the Cultivar-Dependent Cd Accumulation Involving in Cd Subcellular Distribution. Guo JJ; Tan X; Fu HL; Chen JX; Lin XX; Ma Y; Yang ZY J Agric Food Chem; 2018 Feb; 66(8):1923-1934. PubMed ID: 29425449 [TBL] [Abstract][Full Text] [Related]
7. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Liu W; Zhou Q; Sun Y; Liu R Environ Pollut; 2009 Jun; 157(6):1961-7. PubMed ID: 19188009 [TBL] [Abstract][Full Text] [Related]
8. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Liu W; Zhou Q; An J; Sun Y; Liu R J Hazard Mater; 2010 Jan; 173(1-3):737-43. PubMed ID: 19775811 [TBL] [Abstract][Full Text] [Related]
9. Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Mani D; Sharma B; Kumar C Bull Environ Contam Toxicol; 2007 Jul; 79(1):71-9. PubMed ID: 17549427 [TBL] [Abstract][Full Text] [Related]
10. [Differences in cadmium absorption and accumulation of Brassica varieties on cadmium-polluted soil]. Chen Y; Li TQ; Yang XE; Jin YF Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):736-40. PubMed ID: 19637618 [TBL] [Abstract][Full Text] [Related]
11. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Wei S; Zhou Q; Koval PV Sci Total Environ; 2006 Oct; 369(1-3):441-6. PubMed ID: 16859734 [TBL] [Abstract][Full Text] [Related]
12. Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in the shoot of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) cultivars. Xu ZM; Mei XQ; Tan L; Li QS; Wang LL; He BY; Guo SH; Zhou C; Ye HJ Environ Sci Pollut Res Int; 2018 Dec; 25(36):36328-36340. PubMed ID: 30368704 [TBL] [Abstract][Full Text] [Related]
13. Field crops (Ipomoea aquatica Forsk. and Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Tang L; Luo W; Chen W; He Z; Gurajala HK; Hamid Y; Deng M; Yang X Environ Sci Pollut Res Int; 2017 Aug; 24(23):19293-19305. PubMed ID: 28669090 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. He Y; Lin H; Jin X; Dong Y; Luo M Ecotoxicol Environ Saf; 2020 Jul; 198():110660. PubMed ID: 32361492 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
16. Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation. Audet P; Charest C Environ Pollut; 2008 Nov; 156(2):290-6. PubMed ID: 18362044 [TBL] [Abstract][Full Text] [Related]
17. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Li J; Liang D; Qin S; Feng P; Wu X Environ Sci Pollut Res Int; 2015 Jul; 22(14):11076-86. PubMed ID: 25794583 [TBL] [Abstract][Full Text] [Related]
18. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Liang T; Ding H; Wang G; Kang J; Pang H; Lv J Ecotoxicol Environ Saf; 2016 Feb; 124():129-137. PubMed ID: 26513528 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
20. Sulfur application reduces cadmium uptake in edible parts of pakchoi (Brassica chinensis L.) by cadmium chelation and vacuolar sequestration. Li H; Pu P; Li X; Gong Y; An D; Zhang L; Lv J Ecotoxicol Environ Saf; 2020 May; 194():110402. PubMed ID: 32151867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]