These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16688568)

  • 1. Electronically-responsive delivery from a calcified mesoporous silicon structure.
    Batra I; Coffer JL; Canham LT
    Biomed Microdevices; 2006 Jun; 8(2):93-7. PubMed ID: 16688568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias-assisted in vitro calcification of calcium disilicide growth layers on spark-processed silicon.
    Seregin VV; Coffer JL
    Biomaterials; 2006 Jul; 27(20):3726-37. PubMed ID: 16564571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biorelevant mesoporous silicon / polymer composites: directed assembly, disassembly, and controlled release.
    Mukherjee P; Whitehead MA; Senter RA; Fan D; Coffer JL; Canham LT
    Biomed Microdevices; 2006 Mar; 8(1):9-15. PubMed ID: 16491326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye.
    Irani YD; Tian Y; Wang M; Klebe S; McInnes SJ; Voelcker NH; Coffer JL; Williams KA
    Exp Eye Res; 2015 Oct; 139():123-31. PubMed ID: 26277579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon-polymer hybrid materials for drug delivery.
    McInnes SJ; Voelcker NH
    Future Med Chem; 2009 Sep; 1(6):1051-74. PubMed ID: 21425994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds.
    Fan D; Akkaraju GR; Couch EF; Canham LT; Coffer JL
    Nanoscale; 2011 Feb; 3(2):354-61. PubMed ID: 21107480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.
    Seregin VV; Coffer JL
    J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone) as parenteral drug-delivery systems.
    Cho H; Chung D; Jeongho A
    Biomaterials; 2004 Aug; 25(17):3733-42. PubMed ID: 15020149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior.
    Bodiford NK; McInnes SJP; Voelcker NH; Coffer JL
    Biomed Microdevices; 2018 Aug; 20(3):71. PubMed ID: 30097808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous silicon: a platform for the delivery of therapeutics.
    Prestidge CA; Barnes TJ; Lau CH; Barnett C; Loni A; Canham L
    Expert Opin Drug Deliv; 2007 Mar; 4(2):101-10. PubMed ID: 17335408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior.
    Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z
    Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin resonance in silicon substituted apatite and tricalcium phosphate.
    Pietak AM; Reid JW; Sayer M
    Biomaterials; 2005 Jun; 26(18):3819-30. PubMed ID: 15626430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles.
    Pastor E; Matveeva E; Valle-Gallego A; Goycoolea FM; Garcia-Fuentes M
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):601-9. PubMed ID: 21855304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of polarized bias and porous silicon morphology on the electrical behavior of Au-porous silicon contacts.
    Zhao Y; Li DS; Xing SX; Yang DR; Jiang MH
    J Zhejiang Univ Sci B; 2005 Nov; 6(11):1135-40. PubMed ID: 16252350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon substitution in the calcium phosphate bioceramics.
    Pietak AM; Reid JW; Stott MJ; Sayer M
    Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery.
    Bonanno LM; Segal E
    Nanomedicine (Lond); 2011 Dec; 6(10):1755-70. PubMed ID: 22122584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-porosity poly(epsilon-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells.
    Whitehead MA; Fan D; Mukherjee P; Akkaraju GR; Canham LT; Coffer JL
    Tissue Eng Part A; 2008 Jan; 14(1):195-206. PubMed ID: 18333817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.