These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 16688570)

  • 1. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis.
    Wang SJ; Saadi W; Lin F; Minh-Canh Nguyen C; Li Jeon N
    Exp Cell Res; 2004 Oct; 300(1):180-9. PubMed ID: 15383325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients.
    Mosadegh B; Saadi W; Wang SJ; Jeon NL
    Biotechnol Bioeng; 2008 Aug; 100(6):1205-13. PubMed ID: 18553401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery.
    Wu LY; Di Carlo D; Lee LP
    Biomed Microdevices; 2008 Apr; 10(2):197-202. PubMed ID: 17965938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial cell polarization and chemotaxis in a microfluidic device.
    Shamloo A; Ma N; Poo MM; Sohn LL; Heilshorn SC
    Lab Chip; 2008 Aug; 8(8):1292-9. PubMed ID: 18651071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells.
    Jayasinghe SN; Qureshi AN; Eagles PA
    Small; 2006 Feb; 2(2):216-9. PubMed ID: 17193023
    [No Abstract]   [Full Text] [Related]  

  • 13. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEMS-based fabrication and microfluidic analysis of three-dimensional perfusion systems.
    Choi Y; Vukasinovic J; Glezer A; Allen MG
    Biomed Microdevices; 2008 Jun; 10(3):437-46. PubMed ID: 18214683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar microfluidic chamber for generation of stable and steep chemoattractant gradients.
    Fok S; Domachuk P; Rosengarten G; Krause N; Braet F; Eggleton BJ; Soon LL
    Biophys J; 2008 Aug; 95(3):1523-30. PubMed ID: 18645198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel.
    Chaw KC; Manimaran M; Tay FE; Swaminathan S
    Microvasc Res; 2006 Nov; 72(3):153-60. PubMed ID: 17081570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolactin modulates phosphorylation, signaling and trafficking of epidermal growth factor receptor in human T47D breast cancer cells.
    Huang Y; Li X; Jiang J; Frank SJ
    Oncogene; 2006 Dec; 25(58):7565-76. PubMed ID: 16785991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microreactor microfluidic systems with human microsomes and hepatocytes for use in metabolite studies.
    Zguris JC; Itle LJ; Hayes D; Pishko MV
    Biomed Microdevices; 2005 Jun; 7(2):117-25. PubMed ID: 15940424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.