BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16689158)

  • 1. Exploring options for expanded newborn screening.
    Baily MA; Becker W; Hayes M; Clayton EW; Grosse S
    J Law Med Ethics; 2005; 33(4 Suppl):46-8. PubMed ID: 16689158
    [No Abstract]   [Full Text] [Related]  

  • 2. [Mass Screening for Inborn Errors of Metabolism].
    Ito T
    Rinsho Byori; 2015 Apr; 63(4):441-9. PubMed ID: 26536777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incidence and short-term outcome of children with symptomatic presentation of organic acid and fatty acid oxidation disorders in Germany.
    Klose DA; Kölker S; Heinrich B; Prietsch V; Mayatepek E; von Kries R; Hoffmann GF
    Pediatrics; 2002 Dec; 110(6):1204-11. PubMed ID: 12456920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise testing in metabolic myopathies.
    Tarnopolsky M
    Phys Med Rehabil Clin N Am; 2012 Feb; 23(1):173-86, xii. PubMed ID: 22239882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency.
    Diekman EF; Ferdinandusse S; van der Pol L; Waterham HR; Ruiter JP; Ijlst L; Wanders RJ; Houten SM; Wijburg FA; Blank AC; Asselbergs FW; Houtkooper RH; Visser G
    Genet Med; 2015 Dec; 17(12):989-94. PubMed ID: 25834949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New fatty acid oxidation inhibitors with increased potency lacking adverse metabolic and electrophysiological properties.
    Koltun DO; Marquart TA; Shenk KD; Elzein E; Li Y; Nguyen M; Kerwar S; Zeng D; Chu N; Soohoo D; Hao J; Maydanik VY; Lustig DA; Ng KJ; Fraser H; Zablocki JA
    Bioorg Med Chem Lett; 2004 Jan; 14(2):549-52. PubMed ID: 14698201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    Pawar S; Schulz H
    J Biol Chem; 1981 Apr; 256(8):3894-9. PubMed ID: 7012144
    [No Abstract]   [Full Text] [Related]  

  • 8. Glutamate 139 of the large alpha-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of delta 3, delta 2-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    Yang SY; He XY; Schulz H
    Biochemistry; 1995 May; 34(19):6441-7. PubMed ID: 7756275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of fatty acid oxidation disorders: a survey of current treatment strategies.
    Solis JO; Singh RH
    J Am Diet Assoc; 2002 Dec; 102(12):1800-3. PubMed ID: 12487544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the fatty acid oxidation complex in acetyl-CoA-dependent chain elongation of fatty acids in Escherichia coli.
    Nishimaki-Mogami T; Yamanaka H; Mizugaki M
    J Biochem; 1987 Aug; 102(2):427-32. PubMed ID: 3312186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acute fatty liver of pregnancy and mitochondrial fatty acid oxidation. Consequences for the offspring].
    Anon B; Barbet C; Gendrot C; Labarthe F; Bacq Y
    Arch Pediatr; 2017 Aug; 24(8):777-782. PubMed ID: 28647472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multienzyme complexes of fatty acid oxidation from Escherichia coli K12 and from a mutant with a defective L-3-hydroxyacyl coenzyme A dehydrogenase.
    Pramanik A; Schulz H
    Biochim Biophys Acta; 1983 Jan; 750(1):41-6. PubMed ID: 6402028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.
    Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR
    Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway.
    Venkatesan R; Wierenga RK
    ACS Chem Biol; 2013 May; 8(5):1063-73. PubMed ID: 23496842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex.
    Ishikawa M; Tsuchiya D; Oyama T; Tsunaka Y; Morikawa K
    EMBO J; 2004 Jul; 23(14):2745-54. PubMed ID: 15229654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.
    Terada S; Tabata I; Higuchi M
    Jpn J Physiol; 2004 Feb; 54(1):47-52. PubMed ID: 15040848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. beta-Oxidation enzymes in fibroblasts from patients with 3-hydroxydicarboxylic aciduria.
    Venizelos N; Ijlst L; Wanders RJ; Hagenfeldt L
    Pediatr Res; 1994 Jul; 36(1 Pt 1):111-4. PubMed ID: 7936829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation.
    Shen S; Faouzi S; Souquere S; Roy S; Routier E; Libenciuc C; André F; Pierron G; Scoazec JY; Robert C
    Cell Rep; 2020 Nov; 33(8):108421. PubMed ID: 33238129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.