These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 16689264)
1. Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. Loog M; van Ginneken B IEEE Trans Med Imaging; 2006 May; 25(5):602-11. PubMed ID: 16689264 [TBL] [Abstract][Full Text] [Related]
2. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Suzuki K; Abe H; MacMahon H; Doi K IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057 [TBL] [Abstract][Full Text] [Related]
3. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. Shi Y; Qi F; Xue Z; Chen L; Ito K; Matsuo H; Shen D IEEE Trans Med Imaging; 2008 Apr; 27(4):481-94. PubMed ID: 18390345 [TBL] [Abstract][Full Text] [Related]
4. Segmenting lung fields in serial chest radiographs using both population and patient-specific shape statistics. Shi Y; Qi F; Xue Z; Ito K; Matsuo H; Shen D Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):83-91. PubMed ID: 17354877 [TBL] [Abstract][Full Text] [Related]
5. Multi-object segmentation using shape particles. de Bruijne M; Nielsen M Inf Process Med Imaging; 2005; 19():762-73. PubMed ID: 17354742 [TBL] [Abstract][Full Text] [Related]
6. Automatic detection of lesions in lung regions that are segmented using spatial relations. Hassen DB; Taleb H Clin Imaging; 2013; 37(3):498-503. PubMed ID: 23601768 [TBL] [Abstract][Full Text] [Related]
7. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Schilham AM; van Ginneken B; Loog M Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441 [TBL] [Abstract][Full Text] [Related]
8. Temporal subtraction in chest radiography: automated assessment of registration accuracy. Armato SG; Doshi DJ; Engelmann R; Croteau CL; MacMahon H Med Phys; 2006 May; 33(5):1239-49. PubMed ID: 16752558 [TBL] [Abstract][Full Text] [Related]
9. [Segmenting lung fields in serial chest radiographs using both population and patient-specific shape statistics]. Shi YH; Qi FH; Luan HX; Wu GR Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):264-7, 255. PubMed ID: 17039934 [TBL] [Abstract][Full Text] [Related]
10. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming. Maduskar P; Hogeweg L; de Jong PA; Peters-Bax L; Dawson R; Ayles H; Sánchez CI; van Ginneken B Med Phys; 2014 Jul; 41(7):071912. PubMed ID: 24989390 [TBL] [Abstract][Full Text] [Related]
11. Projection profile analysis for identifying different views of chest radiographs. Kao EF; Lee C; Jaw TS; Hsu JS; Liu GC Acad Radiol; 2006 Apr; 13(4):518-25. PubMed ID: 16554233 [TBL] [Abstract][Full Text] [Related]
12. Measurement of mesothelioma on thoracic CT scans: a comparison of manual and computer-assisted techniques. Armato SG; Oxnard GR; MacMahon H; Vogelzang NJ; Kindler HL; Kocherginsky M; Starkey A Med Phys; 2004 May; 31(5):1105-15. PubMed ID: 15191298 [TBL] [Abstract][Full Text] [Related]
13. Prototype system for enhancement of frontal chest radiographs using eigenimage processing. Butler A; Bones P; Hurrell M J Med Imaging Radiat Oncol; 2008 Jun; 52(3):244-53. PubMed ID: 18477119 [TBL] [Abstract][Full Text] [Related]
14. Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data. Staal J; van Ginneken B; Viergever MA Med Image Anal; 2007 Feb; 11(1):35-46. PubMed ID: 17126065 [TBL] [Abstract][Full Text] [Related]
16. An edge-region force guided active shape approach for automatic lung field detection in chest radiographs. Xu T; Mandal M; Long R; Cheng I; Basu A Comput Med Imaging Graph; 2012 Sep; 36(6):452-63. PubMed ID: 22608158 [TBL] [Abstract][Full Text] [Related]
17. Projection profile analysis for automated detection of abnormalities in chest radiographs. Kao EF; Lee C; Hsu JS; Jaw TS; Liu GC Med Phys; 2006 Jan; 33(1):118-23. PubMed ID: 16485417 [TBL] [Abstract][Full Text] [Related]
18. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. van Ginneken B; Stegmann MB; Loog M Med Image Anal; 2006 Feb; 10(1):19-40. PubMed ID: 15919232 [TBL] [Abstract][Full Text] [Related]
19. Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data. van Rikxoort EM; Prokop M; de Hoop B; Viergever MA; Pluim JP; van Ginneken B Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):263-71. PubMed ID: 20425996 [TBL] [Abstract][Full Text] [Related]
20. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Suzuki K; Doi K Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]