These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 16689579)
1. Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase. Rod TH; Rydberg P; Ryde U J Chem Phys; 2006 May; 124(17):174503. PubMed ID: 16689579 [TBL] [Abstract][Full Text] [Related]
2. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase. Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514 [TBL] [Abstract][Full Text] [Related]
3. Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force. Roca M; Moliner V; Ruiz-Pernía JJ; Silla E; Tuñón I J Phys Chem A; 2006 Jan; 110(2):503-9. PubMed ID: 16405322 [TBL] [Abstract][Full Text] [Related]
4. On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations. Roca M; Andrés J; Moliner V; Tuñón I; Bertrán J J Am Chem Soc; 2005 Aug; 127(30):10648-55. PubMed ID: 16045352 [TBL] [Abstract][Full Text] [Related]
5. QM/MM determination of kinetic isotope effects for COMT-catalyzed methyl transfer does not support compression hypothesis. Ruggiero GD; Williams IH; Roca M; Moliner V; Tuñón I J Am Chem Soc; 2004 Jul; 126(28):8634-5. PubMed ID: 15250699 [TBL] [Abstract][Full Text] [Related]
6. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Olson MA Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087 [TBL] [Abstract][Full Text] [Related]
7. A quantum mechanics/molecular mechanics study of the catalytic mechanism and product specificity of viral histone lysine methyltransferase. Zhang X; Bruice TC Biochemistry; 2007 Aug; 46(34):9743-51. PubMed ID: 17676763 [TBL] [Abstract][Full Text] [Related]
8. Quantum mechanical free energy barrier for an enzymatic reaction. Rod TH; Ryde U Phys Rev Lett; 2005 Apr; 94(13):138302. PubMed ID: 15904045 [TBL] [Abstract][Full Text] [Related]
9. Hybrid quantum mechanics/molecular mechanics simulations with two-dimensional interpolated corrections: application to enzymatic processes. Ruiz-Pernía JJ; Silla E; Tuñón I; Martí S J Phys Chem B; 2006 Sep; 110(35):17663-70. PubMed ID: 16942112 [TBL] [Abstract][Full Text] [Related]
10. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Shimizu S; Chan HS Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334 [TBL] [Abstract][Full Text] [Related]
11. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. Olsson MH; Siegbahn PE; Warshel A J Am Chem Soc; 2004 Mar; 126(9):2820-8. PubMed ID: 14995199 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of the Pechmann reaction: a theoretical study. Daru J; Stirling A J Org Chem; 2011 Nov; 76(21):8749-55. PubMed ID: 21932799 [TBL] [Abstract][Full Text] [Related]
13. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
14. Implicit solvation based on generalized Born theory in different dielectric environments. Feig M; Im W; Brooks CL J Chem Phys; 2004 Jan; 120(2):903-11. PubMed ID: 15267926 [TBL] [Abstract][Full Text] [Related]
15. Implicit nonpolar solvent models. Tan C; Tan YH; Luo R J Phys Chem B; 2007 Oct; 111(42):12263-74. PubMed ID: 17918880 [TBL] [Abstract][Full Text] [Related]
16. Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes Theory to catechol O-methyltransferase. Roca M; Moliner V; Tuñón I; Hynes JT J Am Chem Soc; 2006 May; 128(18):6186-93. PubMed ID: 16669689 [TBL] [Abstract][Full Text] [Related]
17. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions. Hori K; Yamaguchi T; Uezu K; Sumimoto M J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291 [TBL] [Abstract][Full Text] [Related]
18. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. Geerke DP; van Gunsteren WF J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737 [TBL] [Abstract][Full Text] [Related]
19. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. Simonson T; Carlsson J; Case DA J Am Chem Soc; 2004 Apr; 126(13):4167-80. PubMed ID: 15053606 [TBL] [Abstract][Full Text] [Related]
20. Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: proton transfer in triosephosphate isomerase. Wang M; Lu Z; Yang W J Chem Phys; 2006 Mar; 124(12):124516. PubMed ID: 16599706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]