These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16689580)

  • 1. The bend angle of water in ice Ih and liquid water: The significance of implementing the nonlinear monomer dipole moment surface in classical interaction potentials.
    Fanourgakis GS; Xantheas SS
    J Chem Phys; 2006 May; 124(17):174504. PubMed ID: 16689580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited.
    Fanourgakis GS; Xantheas SS
    J Phys Chem A; 2006 Mar; 110(11):4100-6. PubMed ID: 16539435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice.
    Imoto S; Xantheas SS; Saito S
    J Chem Phys; 2013 Feb; 138(5):054506. PubMed ID: 23406132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model.
    Saint-Martin H; Hess B; Berendsen HJ
    J Chem Phys; 2004 Jun; 120(23):11133-43. PubMed ID: 15268143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A classical polarizable model for simulations of water and ice.
    Viererblová L; Kolafa J
    Phys Chem Chem Phys; 2011 Nov; 13(44):19925-35. PubMed ID: 21959694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules.
    Kemp DD; Gordon MS
    J Phys Chem A; 2008 Jun; 112(22):4885-94. PubMed ID: 18473449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical interaction model for the water molecule.
    Baranyai A; Bartók A
    J Chem Phys; 2007 May; 126(18):184508. PubMed ID: 17508812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water.
    Fanourgakis GS; Xantheas SS
    J Chem Phys; 2008 Feb; 128(7):074506. PubMed ID: 18298156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice.
    Yu H; van Gunsteren WF
    J Chem Phys; 2004 Nov; 121(19):9549-64. PubMed ID: 15538877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q.
    Alejandre J; Chapela GA; Saint-Martin H; Mendoza N
    Phys Chem Chem Phys; 2011 Nov; 13(44):19728-40. PubMed ID: 21922085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of proton disorder on the structure of ice-Ih: a theoretical study.
    Kuo JL; Klein ML; Kuhs WF
    J Chem Phys; 2005 Oct; 123(13):134505. PubMed ID: 16223312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferable ab Initio Dipole Moment for Water: Three Applications to Bulk Water.
    Liu H; Wang Y; Bowman JM
    J Phys Chem B; 2016 Mar; 120(8):1735-42. PubMed ID: 26436449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static dielectric constants and molecular dipole distributions of liquid water and ice-Ih investigated by the PAW-PBE exchange-correlation functional.
    Rusnak AJ; Pinnick ER; Calderon CE; Wang F
    J Chem Phys; 2012 Jul; 137(3):034510. PubMed ID: 22830714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum effects in ice Ih.
    Hernández de la Peña L; Gulam Razul MS; Kusalik PG
    J Chem Phys; 2005 Oct; 123(14):144506. PubMed ID: 16238406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R; Singh JK; Müller-Plathe F; Böhm MC
    J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vibrational proton potential in bulk liquid water and ice.
    Burnham CJ; Anick DJ; Mankoo PK; Reiter GF
    J Chem Phys; 2008 Apr; 128(15):154519. PubMed ID: 18433247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the resonant dipole interaction model: resolution of a discrepancy between experimental and calculated structures of the carbon dioxide cyclic planar trimer.
    Boychenko IV; Huber H
    J Chem Phys; 2006 Jan; 124(1):14305. PubMed ID: 16409034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.