These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 16689581)

  • 1. Study of multipole contributions to the structure of water around ions in solution using the soft sticky dipole-quadrupole-octupole (SSDQO) model of water.
    Tan ML; Lucan L; Ichiye T
    J Chem Phys; 2006 May; 124(17):174505. PubMed ID: 16689581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft sticky dipole-quadrupole-octupole potential energy function for liquid water: an approximate moment expansion.
    Ichiye T; Tan ML
    J Chem Phys; 2006 Apr; 124(13):134504. PubMed ID: 16613458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical properties of the soft sticky dipole-quadrupole-octupole water model: a molecular dynamics study.
    Chowdhuri S; Tan ML; Ichiye T
    J Chem Phys; 2006 Oct; 125(14):144513. PubMed ID: 17042615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation of Biomolecules by the Soft Sticky Dipole-Quadrupole-Octupole Water Model.
    Te JA; Tan ML; Ichiye T
    Chem Phys Lett; 2010 Feb; 486(1-3):70-73. PubMed ID: 21031143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and pressure dependence of the optimized soft-sticky dipole-quadrupole-octupole water model.
    Te JA; Ichiye T
    J Chem Phys; 2010 Mar; 132(11):114511. PubMed ID: 20331309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UNDERSTANDING STRUCTURAL EFFECTS OF MULTIPOLE MOMENTS ON AQUEOUS SOLVATION OF IONS USING THE SOFT-STICKY DIPOLE-QUADRUPOLE-OCTUPOLE WATER MODEL.
    Te JA; Ichiye T
    Chem Phys Lett; 2010 Oct; 499(4-6):219-225. PubMed ID: 21072252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation of Glucose, Trehalose, and Sucrose by the Soft Sticky Dipole-Quadrupole-Octupole Water Model.
    Te JA; Tan ML; Ichiye T
    Chem Phys Lett; 2010 May; 491(4-6):218-223. PubMed ID: 21072255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules.
    Kemp DD; Gordon MS
    J Phys Chem A; 2008 Jun; 112(22):4885-94. PubMed ID: 18473449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials.
    DeMille RC; Molinero V
    J Chem Phys; 2009 Jul; 131(3):034107. PubMed ID: 19624181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration free energy of a Model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models.
    Gruziel M; Rudnicki WR; Lesyng B
    J Chem Phys; 2008 Feb; 128(6):064503. PubMed ID: 18282052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models.
    Chatterjee S; Debenedetti PG; Stillinger FH; Lynden-Bell RM
    J Chem Phys; 2008 Mar; 128(12):124511. PubMed ID: 18376947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nonadditive forces on the structure and properties of liquid water.
    Li J; Zhou Z; Sadus RJ
    J Chem Phys; 2007 Oct; 127(15):154509. PubMed ID: 17949175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach for designing simple point charge models for liquid water with three interaction sites.
    Glättli A; Daura X; Van Gunsteren WF
    J Comput Chem; 2003 Jul; 24(9):1087-96. PubMed ID: 12759908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.