These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1668965)

  • 1. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus.
    Luo D; Coen ES; Doyle S; Carpenter R
    Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
    Martin C; Lister C
    Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements.
    Krebbers E; Hehl R; Piotrowiak R; Lönnig WE; Sommer H; Saedler H
    Mol Gen Genet; 1987 Oct; 209(3):499-507. PubMed ID: 17193710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tam3 in Antirrhinum majus is exceptional transposon in resistant to alteration by abortive gap repair: identification of nested transposons.
    Yamashita S; Mikami T; Kishima Y
    Mol Gen Genet; 1998 Sep; 259(5):468-74. PubMed ID: 9790577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis.
    Lister C; Jackson D; Martin C
    Plant Cell; 1993 Nov; 5(11):1541-53. PubMed ID: 8312739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular genetic basis of flower colour variegation in Linaria.
    Galego L; Almeida J
    Genet Res; 2007 Jun; 89(3):129-34. PubMed ID: 17894907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
    Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y
    Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.
    Hudson AD; Carpenter R; Coen ES
    Plant Mol Biol; 1990 May; 14(5):835-44. PubMed ID: 1966387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus.
    Lister C; Martin C
    Genetics; 1989 Oct; 123(2):417-25. PubMed ID: 2555255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose.
    Kishima Y; Yamashita S; Martin C; Mikami T
    Plant Mol Biol; 1999 Jan; 39(2):299-308. PubMed ID: 10080696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces.
    Koga A; Iida A; Hori H; Shimada A; Shima A
    Mol Biol Evol; 2006 Jul; 23(7):1414-9. PubMed ID: 16672286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.
    Huang J; Zhang K; Shen Y; Huang Z; Li M; Tang D; Gu M; Cheng Z
    Genomics; 2009 Mar; 93(3):274-81. PubMed ID: 19071208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to gap repair of the transposon Tam3 in Antirrhinum majus: a role of the end regions.
    Yamashita S; Takano-Shimizu T; Kitamura K; Mikami T; Kishima Y
    Genetics; 1999 Dec; 153(4):1899-908. PubMed ID: 10581294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum.
    Uchiyama T; Hiura S; Ebinuma I; Senda M; Mikami T; Martin C; Kishima Y
    New Phytol; 2013 Jan; 197(2):431-440. PubMed ID: 23190182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping by insertion mutagenesis without cloning.
    Sussman R
    Biotechniques; 1994 Mar; 16(3):463-9. PubMed ID: 8185921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon tagging of a male sterility gene in Arabidopsis.
    Aarts MG; Dirkse WG; Stiekema WJ; Pereira A
    Nature; 1993 Jun; 363(6431):715-7. PubMed ID: 8390620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of a transposon in the rice genome.
    Nakazaki T; Okumoto Y; Horibata A; Yamahira S; Teraishi M; Nishida H; Inoue H; Tanisaka T
    Nature; 2003 Jan; 421(6919):170-2. PubMed ID: 12520304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida.
    van Houwelingen A; Souer E; Spelt K; Kloos D; Mol J; Koes R
    Plant J; 1998 Jan; 13(1):39-50. PubMed ID: 9680963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pTn5cat: a Tn5-derived genetic element to facilitate insertion mutagenesis, promoter probing, physical mapping, cloning, and marker exchange in phytopathogenic and other gram-negative bacteria.
    Marsch-Moreno R; Hernández-Guzmán G; Alvarez-Morales A
    Plasmid; 1998; 39(3):205-14. PubMed ID: 9571137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The homeotic Macho mutant of Antirrhinum majus reverts to wild-type or mutates to the homeotic plena phenotype.
    Lönnig WE; Saedler H
    Mol Gen Genet; 1994 Dec; 245(5):636-43. PubMed ID: 7808415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.