These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16689868)

  • 1. Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures.
    Dinglasan-Panlilio MJ; Dworatzek S; Mabury S; Edwards E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):355-64. PubMed ID: 16689868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane.
    Hirschorn SK; Dinglasan-Panlilio MJ; Edwards EA; Lacrampe-Couloume G; Sherwood Lollar B
    Environ Microbiol; 2007 Jul; 9(7):1651-7. PubMed ID: 17564600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas.
    Coates JD; Chakraborty R; Lack JG; O'Connor SM; Cole KA; Bender KS; Achenbach LA
    Nature; 2001 Jun; 411(6841):1039-43. PubMed ID: 11429602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate.
    Rotaru AE; Probian C; Wilkes H; Harder J
    FEMS Microbiol Ecol; 2010 Mar; 71(3):460-8. PubMed ID: 19958385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.
    van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J
    Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics.
    Keller AH; Kleinsteuber S; Vogt C
    Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria.
    Harms G; Rabus R; Widdel F
    Arch Microbiol; 1999 Nov; 172(5):303-12. PubMed ID: 10550472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):118-24. PubMed ID: 12073142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane.
    Zemb O; Lee M; Low A; Manefield M
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):319-25. PubMed ID: 20607230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies.
    Wang SY; Kuo YC; Huang YZ; Huang CW; Kao CM
    Environ Pollut; 2015 Aug; 203():97-106. PubMed ID: 25863886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.
    An YJ; Joo YH; Hong IY; Ryu HW; Cho KS
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):611-9. PubMed ID: 15278317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater.
    Marzorati M; Borin S; Brusetti L; Daffonchio D; Marsilli C; Carpani G; de Ferra F
    Biodegradation; 2006 Mar; 17(2):143-58. PubMed ID: 16565809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia.
    Pham H; Boon N; Marzorati M; Verstraete W
    Water Res; 2009 Jun; 43(11):2936-46. PubMed ID: 19443006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic biodegradation of ethylene dibromide and 1,2-dichloroethane in the presence of fuel hydrocarbons.
    Henderson JK; Freedman DL; Falta RW; Kuder T; Wilson JT
    Environ Sci Technol; 2008 Feb; 42(3):864-70. PubMed ID: 18323114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4.
    Le NB; Coleman NV
    Biodegradation; 2011 Nov; 22(6):1095-108. PubMed ID: 21365473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge: perspectives for in situ remediation.
    De Wildeman S; Nollet H; Van Langenhove H; Diekert G; Verstraete W
    Water Sci Technol; 2002; 45(10):43-8. PubMed ID: 12188575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils.
    Kassenga GR; Pardue JH
    FEMS Microbiol Ecol; 2006 Aug; 57(2):311-23. PubMed ID: 16867148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.