BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16690064)

  • 1. Loading, stationary phase, and salt effects during hydrophobic interaction chromatography: alpha-lactalbumin is stabilized at high loadings.
    Fogle JL; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2006 Jul; 1121(2):209-18. PubMed ID: 16690064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein instability during HIC: evidence of unfolding reversibility, and apparent adsorption strength of disulfide bond-reduced alpha-lactalbumin variants.
    Deitcher RW; Xiao Y; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2009 Apr; 102(5):1416-27. PubMed ID: 19152385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stability and structure in HIC: hydrogen exchange experiments and COREX calculations.
    Gospodarek AM; Smatlak ME; O'Connell JP; Fernandez EJ
    Langmuir; 2011 Jan; 27(1):286-95. PubMed ID: 21117672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizing a two-conformation model for describing salt and temperature effects on protein retention and stability in hydrophobic interaction chromatography.
    Xiao Y; Rathore A; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2007 Jul; 1157(1-2):197-206. PubMed ID: 17524412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein instability during HIC: hydrogen exchange labeling analysis and a framework for describing mobile and stationary phase effects.
    Xiao Y; Jones TT; Laurent AH; O'Connell JP; Przybycien TM; Fernandez EJ
    Biotechnol Bioeng; 2007 Jan; 96(1):80-93. PubMed ID: 16952152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient separation of homologous alpha-lactalbumin from transgenic bovine milk using optimized hydrophobic interaction chromatography.
    Zhang Y; Luo J; Bi J; Wang J; Sun L; Liu Y; Zhang G; Ma G; Su Z
    J Chromatogr A; 2010 Jun; 1217(23):3668-73. PubMed ID: 20416878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention.
    Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ
    Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.
    To BC; Lenhoff AM
    J Chromatogr A; 2011 Jan; 1218(3):427-40. PubMed ID: 21176838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mass overloading on binding and elution of unstable proteins in hydrophobic interaction chromatography.
    Muca R; Marek W; Żurawski M; Piątkowski W; Antos D
    J Chromatogr A; 2017 Apr; 1492():79-88. PubMed ID: 28284765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparative purification of a recombinant protein by hydrophobic interaction chromatography: modulation of selectivity by the use of chaotropic additives.
    Shukla AA; Peterson J; Sorge L; Lewis P; Thomas S; Waugh S
    Biotechnol Prog; 2002; 18(3):556-64. PubMed ID: 12052073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein adsorption isotherm behavior in hydrophobic interaction chromatography.
    Chen J; Cramer SM
    J Chromatogr A; 2007 Sep; 1165(1-2):67-77. PubMed ID: 17698076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic interaction chromatography selectivity changes among three stable proteins: conformation does not play a major role.
    Jones TT; Fernandez EJ
    Biotechnol Bioeng; 2004 Aug; 87(3):388-99. PubMed ID: 15281113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.
    Senczuk AM; Klinke R; Arakawa T; Vedantham G; Yigzaw Y
    Biotechnol Bioeng; 2009 Aug; 103(5):930-5. PubMed ID: 19382248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-lactalbumin tertiary structure changes on hydrophobic interaction chromatography surfaces.
    Tibbs Jones T; Fernandez EJ
    J Colloid Interface Sci; 2003 Mar; 259(1):27-35. PubMed ID: 12651130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel in situ polymerized coatings for hydrophobic interaction chromatography media.
    Fexby S; Ihre H; Bülow L; Van Alstine JM
    J Chromatogr A; 2007 Aug; 1161(1-2):234-41. PubMed ID: 17624362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation.
    Zhang L; Zhao G; Sun Y
    J Phys Chem B; 2009 May; 113(19):6873-80. PubMed ID: 19374422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine improves protein elution in hydrophobic interaction chromatography. The cases of human interleukin-6 and activin-A.
    Tsumoto K; Ejima D; Nagase K; Arakawa T
    J Chromatogr A; 2007 Jun; 1154(1-2):81-6. PubMed ID: 17449045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt.
    Mirani MR; Rahimpour F
    J Chromatogr A; 2015 Nov; 1422():170-177. PubMed ID: 26493472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH.
    Yang F; Zhang M; Zhou BR; Chen J; Liang Y
    J Mol Biol; 2006 Sep; 362(4):821-34. PubMed ID: 16935298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.