These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 1669007)
1. Microsomal generation of reactive oxygen species and their possible role in alcohol hepatotoxicity. Cederbaum AI Alcohol Alcohol Suppl; 1991; 1():291-6. PubMed ID: 1669007 [TBL] [Abstract][Full Text] [Related]
2. Ferritin stimulation of lipid peroxidation by microsomes after chronic ethanol treatment: role of cytochrome P4502E1. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1996 Aug; 332(1):121-7. PubMed ID: 8806716 [TBL] [Abstract][Full Text] [Related]
3. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Kukiełka E; Dicker E; Cederbaum AI Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551 [TBL] [Abstract][Full Text] [Related]
4. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Mira L; Maia L; Barreira L; Manso CF Arch Biochem Biophys; 1995 Apr; 318(1):53-8. PubMed ID: 7726572 [TBL] [Abstract][Full Text] [Related]
5. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH. Dicker E; Cederbaum AI Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163 [TBL] [Abstract][Full Text] [Related]
6. The effect of chronic ethanol consumption on NADH- and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei. Kukiełka E; Cederbaum AI Alcohol Alcohol; 1992 May; 27(3):233-9. PubMed ID: 1449558 [TBL] [Abstract][Full Text] [Related]
7. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes. Rao DN; Yang MX; Lasker JM; Cederbaum AI Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631 [TBL] [Abstract][Full Text] [Related]
8. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969 [TBL] [Abstract][Full Text] [Related]
9. CYP2E1--biochemical and toxicological aspects and role in alcohol-induced liver injury. Cederbaum AI Mt Sinai J Med; 2006 Jul; 73(4):657-72. PubMed ID: 16878272 [TBL] [Abstract][Full Text] [Related]
10. Role of microsomal enzymes in development of alcoholic liver diseases. Konishi M; Ishii H J Gastroenterol Hepatol; 2007 Jun; 22 Suppl 1():S7-10. PubMed ID: 17567472 [TBL] [Abstract][Full Text] [Related]
11. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Cederbaum AI Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274 [TBL] [Abstract][Full Text] [Related]
12. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Albano E; Clot P; Morimoto M; Tomasi A; Ingelman-Sundberg M; French SW Hepatology; 1996 Jan; 23(1):155-63. PubMed ID: 8550035 [TBL] [Abstract][Full Text] [Related]
13. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment. Kukielka E; Cederbaum AI Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):773-9. PubMed ID: 7945202 [TBL] [Abstract][Full Text] [Related]
14. Differences in hepatic and metabolic changes after acute and chronic alcohol consumption. Lieber CS; Teschke R; Hasumura Y; Decarli LM Fed Proc; 1975 Oct; 34(11):2060-74. PubMed ID: 240742 [TBL] [Abstract][Full Text] [Related]
15. The role of microsomal cytochrome b5 in the metabolism of ethanol, drugs and the desaturation of fatty acids. Ozols J Ann Clin Res; 1976; 8 Suppl 17():182-92. PubMed ID: 12714 [TBL] [Abstract][Full Text] [Related]
16. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice. Knecht KT; Thurman RG; Mason RP Arch Biochem Biophys; 1993 Jun; 303(2):339-48. PubMed ID: 8390220 [TBL] [Abstract][Full Text] [Related]
17. Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors. Morimoto M; Hagbjörk AL; Wan YJ; Fu PC; Clot P; Albano E; Ingelman-Sundberg M; French SW Hepatology; 1995 Jun; 21(6):1610-7. PubMed ID: 7768506 [TBL] [Abstract][Full Text] [Related]
18. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Ekström G; Ingelman-Sundberg M Biochem Pharmacol; 1989 Apr; 38(8):1313-9. PubMed ID: 2495801 [TBL] [Abstract][Full Text] [Related]
19. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968-1998)--a review. Lieber CS Alcohol Clin Exp Res; 1999 Jun; 23(6):991-1007. PubMed ID: 10397283 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]