These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16690346)
41. [Advances in safety studies of soil Bt toxin proteins released from transgenic Bt crops]. Bai Y; Jiang M; Cheng J; Jiang Y Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):2062-6. PubMed ID: 14997678 [TBL] [Abstract][Full Text] [Related]
42. Modeling the invasion of recessive Bt-resistant insects: an impact on transgenic plants. Medvinsky AB; Morozov AY; Velkov VV; Li BL; Sokolov MS; Malchow H J Theor Biol; 2004 Nov; 231(1):121-7. PubMed ID: 15363934 [TBL] [Abstract][Full Text] [Related]
43. F2 screen for resistance to a Bacillus thuringiensis-maize hybrid in the sugarcane borer (Lepidoptera: Crambidae). Huang FN; Leonard BR; Andow DA Bull Entomol Res; 2007 Oct; 97(5):437-44. PubMed ID: 17916262 [TBL] [Abstract][Full Text] [Related]
44. Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenée). Han L; Wu K; Peng Y; Wang F; Guo Y J Invertebr Pathol; 2007 Sep; 96(1):71-9. PubMed ID: 17445827 [TBL] [Abstract][Full Text] [Related]
45. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
46. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Himanen SJ; Nerg AM; Nissinen A; Stewart CN; Poppy GM; Holopainen JK Environ Pollut; 2009 Jan; 157(1):181-5. PubMed ID: 18757127 [TBL] [Abstract][Full Text] [Related]
47. In silico designing of insecticidal small interfering RNA (siRNA) for Helicoverpa armigera control. Choudhary M; Sahi S Indian J Exp Biol; 2011 Jun; 49(6):469-74. PubMed ID: 21702227 [TBL] [Abstract][Full Text] [Related]
48. A global approach to resistance monitoring. Sivasupramaniam S; Head GP; English L; Li YJ; Vaughn TT J Invertebr Pathol; 2007 Jul; 95(3):224-6. PubMed ID: 17467005 [TBL] [Abstract][Full Text] [Related]
49. Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Wu J; Luo X; Wang Z; Tian Y; Liang A; Sun Y Biotechnol Lett; 2008 Mar; 30(3):547-54. PubMed ID: 17939056 [TBL] [Abstract][Full Text] [Related]
50. A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Naimov S; Dukiandjiev S; de Maagd RA Plant Biotechnol J; 2003 Jan; 1(1):51-7. PubMed ID: 17147680 [TBL] [Abstract][Full Text] [Related]
51. Glyphosate-resistant crops: adoption, use and future considerations. Dill GM; Cajacob CA; Padgette SR Pest Manag Sci; 2008 Apr; 64(4):326-31. PubMed ID: 18078304 [TBL] [Abstract][Full Text] [Related]
52. The current status and environmental impacts of glyphosate-resistant crops: a review. Cerdeira AL; Duke SO J Environ Qual; 2006; 35(5):1633-58. PubMed ID: 16899736 [TBL] [Abstract][Full Text] [Related]
53. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
54. Derivation and interpretation of hazard quotients to assess ecological risks from the cultivation of insect-resistant transgenic crops. Raybould A; Caron-Lormier G; Bohan DA J Agric Food Chem; 2011 Jun; 59(11):5877-85. PubMed ID: 21247173 [TBL] [Abstract][Full Text] [Related]
55. Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Griffiths BS; Heckmann LH; Caul S; Thompson J; Scrimgeour C; Krogh PH Plant Biotechnol J; 2007 Jan; 5(1):60-8. PubMed ID: 17207257 [TBL] [Abstract][Full Text] [Related]
56. The role of transgenic crops in sustainable development. Raymond Park J; McFarlane I; Hartley Phipps R; Ceddia G Plant Biotechnol J; 2011 Jan; 9(1):2-21. PubMed ID: 21040386 [TBL] [Abstract][Full Text] [Related]
57. Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Schuler TH; Poppy GM; Kerry BR; Denholm I Trends Biotechnol; 1999 May; 17(5):210-6. PubMed ID: 10322447 [TBL] [Abstract][Full Text] [Related]
58. Role of spatial and temporal refuges in the evolution of pest resistance to toxic crops. Lemesle V; Mailleret L; Vaissayre M Acta Biotheor; 2010 Sep; 58(2-3):89-102. PubMed ID: 20658174 [TBL] [Abstract][Full Text] [Related]
59. Deterministic modeling of negative cross-resistance strategies for use in transgenic host-plant resistance. Pittendrigh BR; Gaffney P; Murdock LL J Theor Biol; 2000 May; 204(1):135-50. PubMed ID: 10772853 [TBL] [Abstract][Full Text] [Related]
60. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. Schlüter U; Benchabane M; Munger A; Kiggundu A; Vorster J; Goulet MC; Cloutier C; Michaud D J Exp Bot; 2010 Oct; 61(15):4169-83. PubMed ID: 20581122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]