These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 16690701)
1. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. Rose AJ; Kiens B; Richter EA J Physiol; 2006 Aug; 574(Pt 3):889-903. PubMed ID: 16690701 [TBL] [Abstract][Full Text] [Related]
2. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. Rose AJ; Hargreaves M J Physiol; 2003 Nov; 553(Pt 1):303-9. PubMed ID: 14565989 [TBL] [Abstract][Full Text] [Related]
3. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. Rose AJ; Frøsig C; Kiens B; Wojtaszewski JF; Richter EA J Physiol; 2007 Sep; 583(Pt 2):785-95. PubMed ID: 17627985 [TBL] [Abstract][Full Text] [Related]
4. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. Rose AJ; Broholm C; Kiillerich K; Finn SG; Proud CG; Rider MH; Richter EA; Kiens B J Physiol; 2005 Nov; 569(Pt 1):223-8. PubMed ID: 16210351 [TBL] [Abstract][Full Text] [Related]
5. Regulation and function of Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. Rose AJ; Alsted TJ; Kobberø JB; Richter EA J Physiol; 2007 May; 580(Pt.3):993-1005. PubMed ID: 17272343 [TBL] [Abstract][Full Text] [Related]
6. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Chin ER Proc Nutr Soc; 2004 May; 63(2):279-86. PubMed ID: 15294044 [TBL] [Abstract][Full Text] [Related]
7. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. Chin ER J Appl Physiol (1985); 2005 Aug; 99(2):414-23. PubMed ID: 16020436 [TBL] [Abstract][Full Text] [Related]
8. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Thomassen M; Gunnarsson TP; Christensen PM; Pavlovic D; Shattock MJ; Bangsbo J Am J Physiol Regul Integr Comp Physiol; 2016 Apr; 310(7):R659-69. PubMed ID: 26791827 [TBL] [Abstract][Full Text] [Related]
9. Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. Richter EA; Vistisen B; Maarbjerg SJ; Sajan M; Farese RV; Kiens B J Physiol; 2004 Nov; 560(Pt 3):909-18. PubMed ID: 15297577 [TBL] [Abstract][Full Text] [Related]
10. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. Yu M; Stepto NK; Chibalin AV; Fryer LG; Carling D; Krook A; Hawley JA; Zierath JR J Physiol; 2003 Jan; 546(Pt 2):327-35. PubMed ID: 12527721 [TBL] [Abstract][Full Text] [Related]
11. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473 [TBL] [Abstract][Full Text] [Related]
12. Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. Kraniou GN; Cameron-Smith D; Hargreaves M J Appl Physiol (1985); 2006 Sep; 101(3):934-7. PubMed ID: 16763099 [TBL] [Abstract][Full Text] [Related]
13. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. Roepstorff C; Thiele M; Hillig T; Pilegaard H; Richter EA; Wojtaszewski JF; Kiens B J Physiol; 2006 Jul; 574(Pt 1):125-38. PubMed ID: 16600998 [TBL] [Abstract][Full Text] [Related]
15. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. Widegren U; Jiang XJ; Krook A; Chibalin AV; Björnholm M; Tally M; Roth RA; Henriksson J; Wallberg-henriksson H; Zierath JR FASEB J; 1998 Oct; 12(13):1379-89. PubMed ID: 9761781 [TBL] [Abstract][Full Text] [Related]
16. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Sun P; Enslen H; Myung PS; Maurer RA Genes Dev; 1994 Nov; 8(21):2527-39. PubMed ID: 7958915 [TBL] [Abstract][Full Text] [Related]
17. Exercise-induced histone modifications in human skeletal muscle. McGee SL; Fairlie E; Garnham AP; Hargreaves M J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317 [TBL] [Abstract][Full Text] [Related]
18. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Yeo WK; McGee SL; Carey AL; Paton CD; Garnham AP; Hargreaves M; Hawley JA Exp Physiol; 2010 Feb; 95(2):351-8. PubMed ID: 19854796 [TBL] [Abstract][Full Text] [Related]
19. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16 h of heavy intermittent cycle exercise. Holloway GP; Green HJ; Duhamel TA; Ferth S; Moule JW; Ouyang J; Tupling AR J Appl Physiol (1985); 2005 Sep; 99(3):836-43. PubMed ID: 15860679 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the mechanism of regulation of Ca2+/ calmodulin-dependent protein kinase I by calmodulin and by Ca2+/calmodulin-dependent protein kinase kinase. Matsushita M; Nairn AC J Biol Chem; 1998 Aug; 273(34):21473-81. PubMed ID: 9705275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]