These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16690702)

  • 21. Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons.
    Aman TK; Raman IM
    Biophys J; 2007 Mar; 92(6):1938-51. PubMed ID: 17189307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the hyperpolarization-activated cation current (Ih) in pacemaker activity in area postrema neurons of rat brain slices.
    Funahashi M; Mitoh Y; Kohjitani A; Matsuo R
    J Physiol; 2003 Oct; 552(Pt 1):135-48. PubMed ID: 12897173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current.
    Pennartz CM; Bierlaagh MA; Geurtsen AM
    J Neurophysiol; 1997 Oct; 78(4):1811-25. PubMed ID: 9325350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition.
    Tabuchi S; Gilmer JI; Purba K; Person AL
    J Neurosci; 2019 Feb; 39(7):1169-1181. PubMed ID: 30587539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish.
    Smith GT; Zakon HH
    J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro.
    Midtgaard J
    J Physiol; 1992 Nov; 457():329-54. PubMed ID: 1338460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region.
    Hsiao CF; Gougar K; Asai J; Chandler SH
    J Neurosci Res; 2007 Dec; 85(16):3673-86. PubMed ID: 17668857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study.
    Magistretti J; Castelli L; Forti L; D'Angelo E
    J Physiol; 2006 May; 573(Pt 1):83-106. PubMed ID: 16527854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus.
    Tuckwell HC; Penington NJ
    Prog Neurobiol; 2014 Jul; 118():59-101. PubMed ID: 24784445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endogenous pacemaker activity of rat tumour somatotrophs.
    Kwiecien R; Robert C; Cannon R; Vigues S; Arnoux A; Kordon C; Hammond C
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):883-905. PubMed ID: 9518740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node.
    Cho HS; Takano M; Noma A
    J Physiol; 2003 Jul; 550(Pt 1):169-80. PubMed ID: 12879867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon.
    Astman N; Gutnick MJ; Fleidervish IA
    J Neurosci; 2006 Mar; 26(13):3465-73. PubMed ID: 16571753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei.
    Raman IM; Gustafson AE; Padgett D
    J Neurosci; 2000 Dec; 20(24):9004-16. PubMed ID: 11124976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.
    Li Y; Gorassini MA; Bennett DJ
    J Neurophysiol; 2004 Feb; 91(2):767-83. PubMed ID: 14762149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-activated ionic currents in differentiating rat cerebellar granule neurons cultured from the external germinal layer.
    Stewart RR; Bossu JL; Muzet M; Dupont JL; Feltz A
    J Neurobiol; 1995 Dec; 28(4):419-32. PubMed ID: 8592103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models of subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):698-714. PubMed ID: 8871192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.