These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16690702)

  • 61. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells.
    Osorio N; Cathala L; Meisler MH; Crest M; Magistretti J; Delmas P
    J Physiol; 2010 Feb; 588(Pt 4):651-70. PubMed ID: 20173079
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons.
    Puopolo M; Raviola E; Bean BP
    J Neurosci; 2007 Jan; 27(3):645-56. PubMed ID: 17234596
    [TBL] [Abstract][Full Text] [Related]  

  • 63. KCNQ/Kv7 channel regulation of hippocampal gamma-frequency firing in the absence of synaptic transmission.
    Piccinin S; Randall AD; Brown JT
    J Neurophysiol; 2006 May; 95(5):3105-12. PubMed ID: 16467425
    [TBL] [Abstract][Full Text] [Related]  

  • 64. β-pompilidotoxin modulates spontaneous activity and persistent sodium currents in spinal networks.
    Magloire V; Czarnecki A; Anwander H; Streit J
    Neuroscience; 2011 Jan; 172():129-38. PubMed ID: 20955768
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spontaneous Na+ and Ca2+ spike firing of cerebellar Purkinje neurons at high pressure.
    Etzion Y; Grossman Y
    Pflugers Arch; 1999 Jan; 437(2):276-84. PubMed ID: 9929570
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons.
    Lupica CR; Bell JA; Hoffman AF; Watson PL
    J Neurophysiol; 2001 Jul; 86(1):261-8. PubMed ID: 11431507
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cell-attached measurements of the firing threshold of rat hippocampal neurones.
    Fricker D; Verheugen JA; Miles R
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):791-804. PubMed ID: 10358119
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels.
    Matzner O; Devor M
    J Neurophysiol; 1994 Jul; 72(1):349-59. PubMed ID: 7965019
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons.
    Jackson AC; Yao GL; Bean BP
    J Neurosci; 2004 Sep; 24(37):7985-98. PubMed ID: 15371499
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Calcium spikes and calcium currents in neurons from the medial preoptic nucleus of rat.
    Sundgren-Andersson AK; Johansson S
    Brain Res; 1998 Feb; 783(2):194-209. PubMed ID: 9507126
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex.
    González-Burgos G; Barrionuevo G
    J Neurophysiol; 2001 Oct; 86(4):1671-84. PubMed ID: 11600631
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro.
    Atherton JF; Bevan MD
    J Neurosci; 2005 Sep; 25(36):8272-81. PubMed ID: 16148235
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation.
    Do MT; Bean BP
    Neuron; 2003 Jul; 39(1):109-20. PubMed ID: 12848936
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.
    Goldberg JA; Wilson CJ
    J Neurosci; 2005 Nov; 25(44):10230-8. PubMed ID: 16267230
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BDNF Depresses Excitability of Parvalbumin-Positive Interneurons through an M-Like Current in Rat Dentate Gyrus.
    Nieto-Gonzalez JL; Jensen K
    PLoS One; 2013; 8(6):e67318. PubMed ID: 23840662
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.