These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16690712)

  • 1. Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium-impermeable AMPA receptors and without activation of NMDA receptors.
    Balland B; Lachamp P; Strube C; Kessler JP; Tell F
    J Physiol; 2006 Jul; 574(Pt 1):245-61. PubMed ID: 16690712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats.
    Litvin DG; Dick TE; Smith CB; Jacono FJ
    Brain Behav Immun; 2018 May; 70():398-422. PubMed ID: 29601943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina.
    Chen S; Diamond JS
    J Neurosci; 2002 Mar; 22(6):2165-73. PubMed ID: 11896156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic localization of the glutamate receptor subunit GluR2 in the rat nucleus tractus solitarii.
    Lachamp P; Balland B; Tell F; Crest M; Kessler JP
    Eur J Neurosci; 2003 Feb; 17(4):892-6. PubMed ID: 12603280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamatergic neural transmission in the nucleus tractus solitarius: N-methyl-D-aspartate receptors.
    Bonham AC; Chen CY
    Clin Exp Pharmacol Physiol; 2002; 29(5-6):497-502. PubMed ID: 12010198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses.
    Liu SJ; Cull-Candy SG
    Nat Neurosci; 2005 Jun; 8(6):768-75. PubMed ID: 15895086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of glutamatergic transmission by presynaptic N-methyl-D-aspartate mechanisms in second-order neurons of the rat nucleus tractus solitarius.
    Ohi Y; Kimura S; Haji A
    Neurosci Lett; 2015 Feb; 587():62-7. PubMed ID: 25528404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silent synapses in developing rat nucleus tractus solitarii have AMPA receptors.
    Balland B; Lachamp P; Kessler JP; Tell F
    J Neurosci; 2008 Apr; 28(18):4624-34. PubMed ID: 18448639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptors mediate calcium-dependent, bidirectional changes in dendritic PICK1 clustering.
    Sossa KG; Court BL; Carroll RC
    Mol Cell Neurosci; 2006 Mar; 31(3):574-85. PubMed ID: 16406232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.
    Sun L; June Liu S
    J Physiol; 2007 Sep; 583(Pt 2):537-53. PubMed ID: 17584840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses.
    Wang YQ; Huang YH; Balakrishnan S; Liu L; Wang YT; Nestler EJ; Schlüter OM; Dong Y
    J Neurosci; 2021 Mar; 41(9):1996-2011. PubMed ID: 33436529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of NMDA and AMPA receptor subunits with nNOS in the nucleus tractus solitarii of rat.
    Lin LH; Talman WT
    J Chem Neuroanat; 2002 Nov; 24(4):287-96. PubMed ID: 12406503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colocalization of neurokinin-1, N-methyl-D-aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii.
    Lin LH; Taktakishvili OM; Talman WT
    Neuroscience; 2008 Jun; 154(2):690-700. PubMed ID: 18479828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocytic modulation of glutamatergic synaptic transmission is reduced in NTS of rats submitted to short-term sustained hypoxia.
    Accorsi-Mendonça D; Bonagamba LGH; Machado BH
    J Neurophysiol; 2019 May; 121(5):1822-1830. PubMed ID: 30892977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses.
    Roselli F; Tirard M; Lu J; Hutzler P; Lamberti P; Livrea P; Morabito M; Almeida OF
    J Neurosci; 2005 Nov; 25(48):11061-70. PubMed ID: 16319306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast interaction between AMPA and NMDA receptors by intracellular calcium.
    Rozov A; Burnashev N
    Cell Calcium; 2016 Dec; 60(6):407-414. PubMed ID: 27707506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis and recycling of AMPA receptors lacking GluR2/3.
    Biou V; Bhattacharyya S; Malenka RC
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):1038-43. PubMed ID: 18195348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-ionotropic cross-talk between AMPA and NMDA receptors in rodent hippocampal neurones.
    Bai D; Muller RU; Roder JC
    J Physiol; 2002 Aug; 543(Pt 1):23-33. PubMed ID: 12181279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perinatal development of inhibitory synapses in the nucleus tractus solitarii of the rat.
    Dufour A; Tell F; Baude A
    Eur J Neurosci; 2010 Aug; 32(4):538-49. PubMed ID: 20718854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.