BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16691028)

  • 1. DNA-spermine and DNA-lipid aggregate formation visualized by fluorescence correlation spectroscopy.
    Kral T; Langner M; Hof M
    Chemotherapy; 2006; 52(4):196-9. PubMed ID: 16691028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of spermine on plasmid condensation and dye release observed by fluorescence correlation spectroscopy.
    Kral T; Hof M; Langner M
    Biol Chem; 2002 Feb; 383(2):331-5. PubMed ID: 11934272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy.
    Adjimatera N; Kral T; Hof M; Blagbrough IS
    Pharm Res; 2006 Jul; 23(7):1564-73. PubMed ID: 16783476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of fluorescence correlation spectroscopy in detecting DNA condensation.
    Kral T; Langner M; Benes M; Baczyńska D; Ugorski M; Hof M
    Biophys Chem; 2002 Feb; 95(2):135-44. PubMed ID: 11897152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence correlation spectroscopy (FCS) as a tool to study DNA condensation with hexadecyltrimethylammonium bromide (HTAB).
    Kral T; Hof M; Jurkiewicz P; Langner M
    Cell Mol Biol Lett; 2002; 7(2):203-11. PubMed ID: 12097920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS).
    Melo AM; Prieto M; Coutinho A
    Methods Mol Biol; 2014; 1076():575-95. PubMed ID: 24108645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise.
    Heinemann F; Betaneli V; Thomas FA; Schwille P
    Langmuir; 2012 Sep; 28(37):13395-404. PubMed ID: 22891610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex formation between a DNA duplex and lipid-like spermine derivatives: hydrophobic protection of DNA from one-electron oxidation.
    Cao H; Schuster GB
    Bioconjug Chem; 2005; 16(4):820-6. PubMed ID: 16029023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On mechanism of intermediate-sized circular DNA compaction mediated by spermine: contribution of fluorescence lifetime correlation spectroscopy.
    Humpolícková J; Stepánek M; Kral T; Benda A; Procházka K; Hof M
    J Fluoresc; 2008; 18(3-4):679-84. PubMed ID: 18274704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of new synthesized fluorescent cationic amphiphiles bearing pyrene hydrophobe with plasmid DNA: binding affinities, aggregation and intracellular uptake.
    Sheng R; Luo T; Zhu Y; Li H; Cao A
    Macromol Biosci; 2010 Aug; 10(8):974-82. PubMed ID: 20552606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy to determine the diffusion coefficient of α-synuclein and follow early oligomer formation.
    Nath S; Deng M; Engelborghs Y
    Methods Mol Biol; 2012; 895():499-506. PubMed ID: 22760336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exonucleolytic degradation of high-density labeled DNA studied by fluorescence correlation spectroscopy.
    Ehrlich N; Anhalt K; Paulsen H; Brakmann S; Hübner CG
    Analyst; 2012 Mar; 137(5):1160-7. PubMed ID: 22268065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-induced intramolecular folding dynamics of i-motif DNA.
    Choi J; Kim S; Tachikawa T; Fujitsuka M; Majima T
    J Am Chem Soc; 2011 Oct; 133(40):16146-53. PubMed ID: 21882887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by Brownian dynamics.
    Wocjan T; Krieger J; Krichevsky O; Langowski J
    Phys Chem Chem Phys; 2009 Dec; 11(45):10671-81. PubMed ID: 20145811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.
    Zhang Z; Yomo D; Gradinaru C
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1242-1253. PubMed ID: 28392350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy.
    Gracie K; Smith WE; Yip P; Sutter JU; Birch DJ; Graham D; Faulds K
    Analyst; 2014 Aug; 139(15):3735-43. PubMed ID: 24915043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy.
    Van Craenenbroeck E; Engelborghs Y
    Biochemistry; 1999 Apr; 38(16):5082-8. PubMed ID: 10213611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accessing molecular dynamics in cells by fluorescence correlation spectroscopy.
    Dittrich P; Malvezzi-Campeggi F; Jahnz M; Schwille P
    Biol Chem; 2001 Mar; 382(3):491-4. PubMed ID: 11347899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysical behavior of a dimeric cyanine dye (BOBO-1) within cationic liposomes.
    Madeira C; Fedorov A; Aires-Barros MR; Prieto M; Loura LM
    Photochem Photobiol; 2005; 81(6):1450-9. PubMed ID: 16029081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.