BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16691490)

  • 1. Rescue of folding defects in ABC transporters using pharmacological chaperones.
    Loo TW; Bartlett MC; Clarke DM
    J Bioenerg Biomembr; 2005 Dec; 37(6):501-7. PubMed ID: 16691490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound.
    Loo TW; Bartlett MC; Clarke DM
    Mol Pharm; 2005; 2(5):407-13. PubMed ID: 16196493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing mutations located throughout the human multidrug resistance P-glycoprotein disrupt interactions between the nucleotide binding domains.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2004 Sep; 279(37):38395-401. PubMed ID: 15247215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.
    Veit G; Oliver K; Apaja PM; Perdomo D; Bidaud-Meynard A; Lin ST; Guo J; Icyuz M; Sorscher EJ; Hartman JL; Lukacs GL
    PLoS Biol; 2016 May; 14(5):e1002462. PubMed ID: 27168400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
    Loo TW; Bartlett MC; Wang Y; Clarke DM
    Biochem J; 2006 May; 395(3):537-42. PubMed ID: 16417523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressor mutations in the transmembrane segments of P-glycoprotein promote maturation of processing mutants and disrupt a subset of drug-binding sites.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(44):32043-52. PubMed ID: 17848563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
    Serohijos AW; Hegedus T; Riordan JR; Dokholyan NV
    PLoS Comput Biol; 2008 Feb; 4(2):e1000008. PubMed ID: 18463704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl- channel functions.
    Norez C; Pasetto M; Dechecchi MC; Barison E; Anselmi C; Tamanini A; Quiri F; Cattel L; Rizzotti P; Dosio F; Cabrini G; Colombatti M
    Am J Physiol Lung Cell Mol Physiol; 2008 Aug; 295(2):L336-47. PubMed ID: 18515409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in intracellular loops 1 and 3 lead to misfolding of human P-glycoprotein (ABCB1) that can be rescued by cyclosporine A, which reduces its association with chaperone Hsp70.
    Kapoor K; Bhatnagar J; Chufan EE; Ambudkar SV
    J Biol Chem; 2013 Nov; 288(45):32622-32636. PubMed ID: 24064216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR: folding, misfolding and correcting the ΔF508 conformational defect.
    Lukacs GL; Verkman AS
    Trends Mol Med; 2012 Feb; 18(2):81-91. PubMed ID: 22138491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis: a brief look at some highlights of a decade of research focused on elucidating and correcting the molecular basis of the disease.
    Ko YH; Pedersen PL
    J Bioenerg Biomembr; 2001 Dec; 33(6):513-21. PubMed ID: 11804193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the blanks--pharmacochaperoning of SLC6 transporters and ABC transporters.
    Chiba P; Freissmuth M; Stockner T
    Pharmacol Res; 2014 May; 83(100):63-73. PubMed ID: 24316454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of CFTR Structure.
    Patrick AE; Thomas PJ
    Front Pharmacol; 2012; 3():162. PubMed ID: 22973227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein.
    Sarankó H; Tordai H; Telbisz Á; Özvegy-Laczka C; Erdős G; Sarkadi B; Hegedűs T
    Biochem Biophys Res Commun; 2013 Jul; 437(1):140-5. PubMed ID: 23800412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.