BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1669291)

  • 1. Emergence and propagation of interictal spikes in the subcortically denervated hippocampus.
    Buzsáki G; Hsu M; Slamka C; Gage FH; Horváth Z
    Hippocampus; 1991 Apr; 1(2):163-80. PubMed ID: 1669291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo.
    Sloviter RS
    Hippocampus; 1991 Jan; 1(1):31-40. PubMed ID: 1669342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of evoked local field potentials in the hippocampus of epileptic rats with spontaneous seizures.
    Queiroz CM; Gorter JA; Lopes da Silva FH; Wadman WJ
    J Neurophysiol; 2009 Mar; 101(3):1588-97. PubMed ID: 18842951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting increased excitability differs in dentate gyrus vs. CA1 in freely moving chronic epileptic rats after electrically induced status epilepticus.
    Gorter JA; van Vliet EA; Aronica E; Lopes da Silva FH
    Hippocampus; 2002; 12(3):311-24. PubMed ID: 12099483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy.
    Buzsáki G; Ponomareff GL; Bayardo F; Ruiz R; Gage FH
    Neuroscience; 1989; 28(3):527-38. PubMed ID: 2710328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat.
    Zheng F; Khanna S
    Brain Res Bull; 2008 Dec; 77(6):374-81. PubMed ID: 18852032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-D-aspartate-dependent long-term potentiation.
    Hetherington PA; Austin KB; Shapiro ML
    Hippocampus; 1994 Aug; 4(4):422-38. PubMed ID: 7874234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPA receptor modulators have different impact on hippocampal pyramidal cells and interneurons.
    Xia YF; Arai AC
    Neuroscience; 2005; 135(2):555-67. PubMed ID: 16125852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of interictal spikes on single-cell firing patterns in the hippocampus.
    Zhou JL; Lenck-Santini PP; Zhao Q; Holmes GL
    Epilepsia; 2007 Apr; 48(4):720-31. PubMed ID: 17284294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy.
    Jensen MS; Yaari Y
    J Neurophysiol; 1997 Mar; 77(3):1224-33. PubMed ID: 9084592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats.
    Bramham CR
    J Neurophysiol; 1998 Jun; 79(6):2825-32. PubMed ID: 9636089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice.
    Rafiq A; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1993 Nov; 70(5):1962-74. PubMed ID: 8294965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of long-term potentiation in the subcortically deafferented dentate gyrus.
    Buzsáki G; Gage FH
    Brain Res; 1989 Apr; 484(1-2):94-101. PubMed ID: 2713705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production.
    Stringer JL; Williamson JM; Lothman EW
    J Neurophysiol; 1989 Jul; 62(1):126-35. PubMed ID: 2754466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus.
    Foffani G; Uzcategui YG; Gal B; Menendez de la Prida L
    Neuron; 2007 Sep; 55(6):930-41. PubMed ID: 17880896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat.
    Bragin A; Jandó G; Nádasdy Z; van Landeghem M; Buzsáki G
    J Neurophysiol; 1995 Apr; 73(4):1691-705. PubMed ID: 7643175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained potential shifts and paroxysmal discharges in hippocampal formation.
    Somjen GG; Aitken PG; Giacchino JL; McNamara JO
    J Neurophysiol; 1985 Apr; 53(4):1079-97. PubMed ID: 3998793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.