These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16696195)

  • 1. The expanded application of most probable number to the quantitative evaluation of extremely low microbial count.
    Sun X; Kurosu S; Shintani H
    PDA J Pharm Sci Technol; 2006; 60(2):124-34. PubMed ID: 16696195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charting and Evaluation of Environmental Microbial Monitoring Data.
    Bar R
    PDA J Pharm Sci Technol; 2015; 69(6):743-61. PubMed ID: 26659105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of direct colony count methods and the MPN-method for quantitative detection of Listeria in model and field conditions].
    Hildebrandt G; Schott W
    Berl Munch Tierarztl Wochenschr; 2001; 114(11-12):453-64. PubMed ID: 11766274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.
    Godish D; Godish T
    J Occup Environ Hyg; 2008 Feb; 5(2):100-6. PubMed ID: 18085480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enumeration of fungi in fruits by the most probable number method.
    Watanabe M; Tsutsumi F; Lee K; Sugita-Konishi Y; Kumagai S; Takatori K; Hara-Kudo Y; Konuma H
    J Food Sci; 2010; 75(9):M564-7. PubMed ID: 21535611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of rapid microbiological methods for the risk assessment of controlled biopharmaceutical environments.
    Sandle T; Leavy C; Jindal H; Rhodes R
    J Appl Microbiol; 2014 Jun; 116(6):1495-505. PubMed ID: 24575809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Most probable number methodology for quantifying dilute concentrations and fluxes of Escherichia coli O157:H7 in surface waters.
    Jenkins MB; Endale DM; Fisher DS; Gay PA
    J Appl Microbiol; 2009 Feb; 106(2):572-9. PubMed ID: 19200323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-stochastic sampling error in quantal analyses for Campylobacter species on poultry products.
    Irwin P; Reed S; Brewster J; Nguyen L; He Y
    Anal Bioanal Chem; 2013 Mar; 405(7):2353-69. PubMed ID: 23380949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application effect of most probable number (MPN) method in photosynthetic bacteria counting].
    Cui Z; Wang P; Wang Q
    Ying Yong Sheng Tai Xue Bao; 2005 Aug; 16(8):1577-80. PubMed ID: 16262083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of triphenyltetrazolium chloride in microbial limit test of pharmaceuticals and cosmetics.
    Ohara MT; Saito T
    J AOAC Int; 1995; 78(6):1525-9. PubMed ID: 8664592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of environmental monitoring data: does a worst case time for monitoring clean rooms exist?
    Cundell AM; Bean R; Massimore L; Maier C
    PDA J Pharm Sci Technol; 1998; 52(6):326-30. PubMed ID: 10050131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring minimization of grade B environments based on risk assessment using three-dimensional airflow measurements and computer simulation.
    Katayama H; Higo T; Tokunaga Y; Katoh S; Hiyama Y; Morikawa K
    PDA J Pharm Sci Technol; 2008; 62(4):244-55. PubMed ID: 19174953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne viable particles and total number of airborne particles: comparative studies of active air sampling.
    Ljungqvist B; Reinmüller B
    PDA J Pharm Sci Technol; 2000; 54(2):112-6. PubMed ID: 10822982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling?
    Landrin A; Bissery A; Kac G
    J Hosp Infect; 2005 Sep; 61(1):27-9. PubMed ID: 16009457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle counting and microbiological air sampling: results of the simultaneous use of both procedures in different types of hospital rooms.
    Armadans-Gil L; Rodríguez-Garrido V; Campins-Martí M; Gil-Cuesta J; Vaqué-Rafart J
    Enferm Infecc Microbiol Clin; 2013 Apr; 31(4):217-21. PubMed ID: 22525830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration.
    Gronewold AD; Wolpert RL
    Water Res; 2008 Jul; 42(13):3327-34. PubMed ID: 18490046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expanded application of most probable number to the quantitative evaluation of extremely low microbial count.
    Blodgett RJ; Moruzzi G
    PDA J Pharm Sci Technol; 2006; 60(6):335-6. PubMed ID: 17260897
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of Different Calculation Approaches for Defining Microbiological Control Levels Based on Historical Data.
    Gordon O; Goverde M; Pazdan J; Staerk A; Roesti D
    PDA J Pharm Sci Technol; 2015; 69(3):383-98. PubMed ID: 26048745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters.
    Jenkins MB; Endale DM; Fisher DS
    J Appl Microbiol; 2008 Jun; 104(6):1562-8. PubMed ID: 18179540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantitative analysis of factors to influence the environment of the clean room and clean bench during preparation of intravenous hyperalimentation (IVH) admixtures].
    Hotoda S; Aoyama T; Sato A; Yamamura Y; Nakajima K; Nakamura K; Sato H; Iga T
    Yakugaku Zasshi; 1999 Dec; 119(12):921-8. PubMed ID: 10630097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.