These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16696254)

  • 1. Toward the improvement of image-guided interventions for minimally invasive surgery: three factors that affect performance.
    DeLucia PR; Mather RD; Griswold JA; Mitra S
    Hum Factors; 2006; 48(1):23-38. PubMed ID: 16696254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-enhanced surgical navigation for endoscopic sinus surgery: evaluating calibration, registration and tracking.
    Lapeer R; Chen MS; Gonzalez G; Linney A; Alusi G
    Int J Med Robot; 2008 Mar; 4(1):32-45. PubMed ID: 18273913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of camera arrangement on perceptual-motor performance in minimally invasive surgery.
    Delucia PR; Griswold JA
    J Exp Psychol Appl; 2011 Sep; 17(3):210-32. PubMed ID: 21942312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of three-dimensional structure from two-dimensional endovascular images: implications for educators in vascular surgery.
    Sidhu RS; Tompa D; Jang R; Grober ED; Johnston KW; Reznick RK; Hamstra SJ
    J Vasc Surg; 2004 Jun; 39(6):1305-11. PubMed ID: 15192573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of a supplemental wide field of view versus a single field of view with zoom on performance in minimally invasive surgery.
    Cao A; Darin Ellis R; Klein ED; Auner GW; Klein MD; Pandya AK
    Surg Endosc; 2008 Jun; 22(6):1445-51. PubMed ID: 17972133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth Perception of Surgeons in Minimally Invasive Surgery.
    Bogdanova R; Boulanger P; Zheng B
    Surg Innov; 2016 Oct; 23(5):515-24. PubMed ID: 27009686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery.
    Kim CW; Lee YP; Taylor W; Oygar A; Kim WK
    Spine J; 2008; 8(4):584-90. PubMed ID: 18586198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes.
    Hu M; Penney G; Figl M; Edwards P; Bello F; Casula R; Rueckert D; Hawkes D
    Med Image Anal; 2012 Apr; 16(3):597-611. PubMed ID: 21195656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the size-illusion effect on prehensile movements depend on preview duration for visuomotor process?
    Katsumata H
    J Mot Behav; 2014; 46(2):83-93. PubMed ID: 24446928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicenter prospective cohort study on camera navigation training for key user groups in minimally invasive surgery.
    Graafland M; Bok K; Schreuder HW; Schijven MP
    Surg Innov; 2014 Jun; 21(3):312-9. PubMed ID: 24132469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shape of the scene background determines the perceived path of a moving object.
    Zhang J; Braunstein ML; Andersen GJ
    J Exp Psychol Hum Percept Perform; 2014 Dec; 40(6):2117-23. PubMed ID: 25181369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.
    Liao H; Ishihara H; Tran HH; Masamune K; Sakuma I; Dohi T
    Comput Med Imaging Graph; 2010 Jan; 34(1):46-54. PubMed ID: 19674871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Current state of doing minimal invasive total hip replacement in Germany, the use of new implants and navigation--results of a nation-wide survey].
    Sendtner E; Boluki D; Grifka J
    Z Orthop Unfall; 2007; 145(3):297-302. PubMed ID: 17607626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeleton-based active catheter navigation.
    Fu Y; Liu H; Wang S; Deng W; Li X; Liang Z
    Int J Med Robot; 2009 Jun; 5(2):125-35. PubMed ID: 19177337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image-guided surgical navigation for removal of foreign bodies in the deep maxillofacial region.
    Gui H; Yang H; Shen SG; Xu B; Zhang S; Bautista JS
    J Oral Maxillofac Surg; 2013 Sep; 71(9):1563-71. PubMed ID: 23810618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimally invasive total knee arthroplasty: the importance of instrumentation.
    Tria AJ
    Orthop Clin North Am; 2004 Apr; 35(2):227-34. PubMed ID: 15062708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illusions in action: consequences of inconsistent processing of spatial attributes.
    Smeets JB; Brenner E; de Grave DD; Cuijpers RH
    Exp Brain Res; 2002 Nov; 147(2):135-44. PubMed ID: 12410328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study between computer assisted-navigation and conventional technique in minimally invasive surgery total knee arthroplasty, prospective control study.
    Chotanaphuti T; Ongnamthip P; Teeraleekul K; Kraturerk C
    J Med Assoc Thai; 2008 Sep; 91(9):1382-8. PubMed ID: 18843868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vision guided hybrid robotic prototype system for stereotactic surgery.
    Wei J; Wang T; Liu D
    Int J Med Robot; 2011 Dec; 7(4):475-81. PubMed ID: 21984231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.