These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16696263)

  • 21. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic cursor gain and tactual feedback in the capture of cursor movements.
    Keyson DV
    Ergonomics; 1997 Dec; 40(12):1287-98. PubMed ID: 9416013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positioning graphical objects on computer screens: a three-phase model.
    Pastel R
    Hum Factors; 2011 Feb; 53(1):22-37. PubMed ID: 21469531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
    Choi C; Rim B; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975386. PubMed ID: 22275590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees.
    Kim K; Colgate JE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):798-805. PubMed ID: 22855230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using mixed reality, force feedback and tactile augmentation to improve the realism of medical simulation.
    Fisher JB; Porter SM
    Stud Health Technol Inform; 2002; 85():144-9. PubMed ID: 15458076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable Haptic Device Presenting Sensations of Fingertips to the Forearm.
    Moriyama T; Kajimoto H
    IEEE Trans Haptics; 2022; 15(1):91-96. PubMed ID: 35077369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fitts' law model and target size of pointing devices in a vibration environment.
    Liu CN; Lin CJ; Chao CJ
    Percept Mot Skills; 2007 Dec; 105(3 Pt 1):959-67. PubMed ID: 18229550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vision and friction on haptic perception.
    Perreault JO; Cao CG
    Hum Factors; 2006; 48(3):574-86. PubMed ID: 17063970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of forearm muscle activity and wrist kinematics in symptomatic office workers performing mouse-clicking tasks with different precision and speed demands.
    Szeto GP; Lin JK
    J Electromyogr Kinesiol; 2011 Feb; 21(1):59-66. PubMed ID: 20643564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heuristic haptic texture for surgical simulations.
    Acosta E; Temkin B; Griswold JA; Deeb SA; Krummel T; Haluck RS; Kavoussi LR
    Stud Health Technol Inform; 2002; 85():14-6. PubMed ID: 15458053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pointing Device Performance in Steering Tasks.
    Senanayake R; Goonetilleke RS
    Percept Mot Skills; 2016 Jun; 122(3):886-910. PubMed ID: 27216944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.