BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1131 related articles for article (PubMed ID: 16696481)

  • 1. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-plane visibility of lesions using breast tomosynthesis and digital mammography.
    Timberg P; Båth M; Andersson I; Mattsson S; Tingberg A; Ruschin M
    Med Phys; 2010 Nov; 37(11):5618-26. PubMed ID: 21158273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the impact of X-ray spectral shape on image quality in flat-panel CT breast imaging.
    Glick SJ; Thacker S; Gong X; Liu B
    Med Phys; 2007 Jan; 34(1):5-24. PubMed ID: 17278485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.
    Van Uytven E; Pistorius S; Gordon R
    Med Phys; 2007 Jan; 34(1):256-65. PubMed ID: 17278511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast tomosynthesis: Accuracy of tumor measurement compared with digital mammography and ultrasonography.
    Förnvik D; Zackrisson S; Ljungberg O; Svahn T; Timberg P; Tingberg A; Andersson I
    Acta Radiol; 2010 Apr; 51(3):240-7. PubMed ID: 20105090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study.
    Svahn T; Andersson I; Chakraborty D; Svensson S; Ikeda D; Förnvik D; Mattsson S; Tingberg A; Zackrisson S
    Radiat Prot Dosimetry; 2010; 139(1-3):113-7. PubMed ID: 20228048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of reconstruction algorithms for breast tomosynthesis.
    Wu T; Moore RH; Rafferty EA; Kopans DB
    Med Phys; 2004 Sep; 31(9):2636-47. PubMed ID: 15487747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatter radiation in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi CJ; Karellas A
    Med Phys; 2007 Feb; 34(2):564-76. PubMed ID: 17388174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.
    Rafferty EA; Park JM; Philpotts LE; Poplack SP; Sumkin JH; Halpern EF; Niklason LT
    AJR Am J Roentgenol; 2014 Feb; 202(2):273-81. PubMed ID: 24450665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography.
    Svane G; Azavedo E; Lindman K; Urech M; Nilsson J; Weber N; Lindqvist L; Ullberg C
    Acta Radiol; 2011 Mar; 52(2):134-42. PubMed ID: 21498340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice.
    Greenberg JS; Javitt MC; Katzen J; Michael S; Holland AE
    AJR Am J Roentgenol; 2014 Sep; 203(3):687-93. PubMed ID: 24918774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital breast tomosynthesis: observer performance study.
    Gur D; Abrams GS; Chough DM; Ganott MA; Hakim CM; Perrin RL; Rathfon GY; Sumkin JH; Zuley ML; Bandos AI
    AJR Am J Roentgenol; 2009 Aug; 193(2):586-91. PubMed ID: 19620460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.