These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16696935)

  • 1. High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation.
    Sondermann M; George M; Fertig N; Behrends JC
    Biochim Biophys Acta; 2006 Apr; 1758(4):545-51. PubMed ID: 16696935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Reversed" alamethicin conductance in lipid bilayers.
    Taylor RJ; de Levie R
    Biophys J; 1991 Apr; 59(4):873-9. PubMed ID: 1712238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructured apertures in planar glass substrates for ion channel research.
    Fertig N; George M; Klau M; Meyer C; Tilke A; Sobotta C; Blick RH; Behrends JC
    Recept Channels; 2003; 9(1):29-40. PubMed ID: 12825296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent conductance for alamethicin in phospholipid vesicles. A test for the mechanism of gating.
    Archer SJ; Cafiso DS
    Biophys J; 1991 Aug; 60(2):380-8. PubMed ID: 1717015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2323-36. PubMed ID: 8599639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructured glass chip for ion-channel electrophysiology.
    Fertig N; Meyer C; Blick RH; Trautmann C; Behrends JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):040901. PubMed ID: 11690001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-free self-assembling fullerene and lipopeptide conjugates of alamethicin form voltage-dependent ion channels of remarkable stability and activity.
    Jung G; Redemann T; Kroll K; Meder S; Hirsch A; Boheim G
    J Pept Sci; 2003; 9(11-12):784-98. PubMed ID: 14658798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax.
    Tank DW; Miller C; Webb WW
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7749-53. PubMed ID: 6296849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lipid vesicle system for probing voltage-dependent peptide-lipid interactions: application to alamethicin channel formation.
    Woolley GA; Deber CM
    Biopolymers; 1989 Jan; 28(1):267-72. PubMed ID: 2470433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transduction of membrane tension by the ion channel alamethicin.
    Opsahl LR; Webb WW
    Biophys J; 1994 Jan; 66(1):71-4. PubMed ID: 7510531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical actuation of ion channels using a piezoelectric planar patch clamp system.
    Stava E; Yu M; Shin HC; Shin H; Rodriguez J; Blick RH
    Lab Chip; 2012 Jan; 12(1):80-7. PubMed ID: 22015778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial membrane excitability revisited and implications for the gating of voltage-dependent ion channels.
    Duclohier H; Spach G
    Gen Physiol Biophys; 2001 Dec; 20(4):361-74. PubMed ID: 11989647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14.
    Kaduk C; Dathe M; Bienert M
    Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors.
    Yin P; Burns CJ; Osman PD; Cornell BA
    Biosens Bioelectron; 2003 Apr; 18(4):389-97. PubMed ID: 12604256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps.
    Wonderlin WF; Finkel A; French RJ
    Biophys J; 1990 Aug; 58(2):289-97. PubMed ID: 1698470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.