These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 16696983)
1. Targeting of host cell lineages by vertically transmitted, feminising microsporidia. Weedall RT; Robinson M; Smith JE; Dunn AM Int J Parasitol; 2006 Jun; 36(7):749-56. PubMed ID: 16696983 [TBL] [Abstract][Full Text] [Related]
2. Transmission and burden and the impact of temperature on two species of vertically transmitted microsporidia. Dunn AM; Hogg JC; Hatcher MJ Int J Parasitol; 2006 Apr; 36(4):409-14. PubMed ID: 16442539 [TBL] [Abstract][Full Text] [Related]
3. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Haine ER; Motreuil S; Rigaud T Parasitology; 2007 Sep; 134(Pt 10):1363-7. PubMed ID: 17445328 [TBL] [Abstract][Full Text] [Related]
4. Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni. Hatcher MJ; Hogg JC; Dunn AM Int J Parasitol; 2005 Mar; 35(3):265-74. PubMed ID: 15722078 [TBL] [Abstract][Full Text] [Related]
5. The impact of a vertically transmitted microsporidian, Nosema granulosis on the fitness of its Gammarus duebeni host under stressful environmental conditions. Kelly A; Hatcher MJ; Dunn AM Parasitology; 2003 Feb; 126(Pt 2):119-24. PubMed ID: 12636349 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterisation of the Microsporidia of the amphipod Gammarus duebeni across its natural range revealed hidden diversity, wide-ranging prevalence and potential for co-evolution. Krebes L; Blank M; Frankowski J; Bastrop R Infect Genet Evol; 2010 Oct; 10(7):1027-38. PubMed ID: 20601176 [TBL] [Abstract][Full Text] [Related]
7. Paramyxean-microsporidian co-infection in amphipods: is the consensus that Microsporidia can feminise their hosts presumptive? Short S; Guler Y; Yang G; Kille P; Ford AT Int J Parasitol; 2012 Jun; 42(7):683-91. PubMed ID: 22609329 [TBL] [Abstract][Full Text] [Related]
8. Microsporidian parasites feminise hosts without paramyxean co-infection: support for convergent evolution of parasitic feminisation. Ironside JE; Alexander J Int J Parasitol; 2015 May; 45(6):427-33. PubMed ID: 25747725 [TBL] [Abstract][Full Text] [Related]
9. Effects of cyproterone acetate and vertically transmitted microsporidia parasite on Gammarus pulex sperm production. Gismondi E; Fivet A; Joaquim-Justo C Environ Sci Pollut Res Int; 2017 Oct; 24(29):23417-23421. PubMed ID: 28905182 [TBL] [Abstract][Full Text] [Related]
10. Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effect on reproduction. Haine ER; Brondani E; Hume KD; Perrot-Minnot MJ; Gaillard M; Rigaud T Int J Parasitol; 2004 Sep; 34(10):1137-46. PubMed ID: 15380685 [TBL] [Abstract][Full Text] [Related]
11. Male-biased sex-ratio distortion caused by Octosporea bayeri, a vertically and horizontally-transmitted parasite of Daphnia magna. Roth O; Ebert D; Vizoso DB; Bieger A; Lass S Int J Parasitol; 2008 Jul; 38(8-9):969-79. PubMed ID: 18190917 [TBL] [Abstract][Full Text] [Related]
12. Virulence is context-dependent in a vertically transmitted aquatic host-microparasite system. Ryan JA; Kohler SL Int J Parasitol; 2010 Dec; 40(14):1665-73. PubMed ID: 20699101 [TBL] [Abstract][Full Text] [Related]
13. Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni. Ironside JE; Smith JE; Hatcher MJ; Sharpe RG; Rollinson D; Dunn AM J Evol Biol; 2003 May; 16(3):467-73. PubMed ID: 14635846 [TBL] [Abstract][Full Text] [Related]
14. Microsporidian infections in the species complex Gammarus roeselii (Amphipoda) over its geographical range: evidence for both host-parasite co-diversification and recent host shifts. Quiles A; Bacela-Spychalska K; Teixeira M; Lambin N; Grabowski M; Rigaud T; Wattier RA Parasit Vectors; 2019 Jun; 12(1):327. PubMed ID: 31253176 [TBL] [Abstract][Full Text] [Related]
15. Infection of Gammarus duebeni populations by two vertically transmitted microsporidia; parasite detection and discrimination by PCR-RFLP. Hogg JC; Ironside JE; Sharpe RG; Hatcher MJ; Smith JE; Dunn AM Parasitology; 2002 Jul; 125(Pt 1):59-63. PubMed ID: 12166521 [TBL] [Abstract][Full Text] [Related]
16. Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Slothouber Galbreath JG; Smith JE; Terry RS; Becnel JJ; Dunn AM Int J Parasitol; 2004 Feb; 34(2):235-44. PubMed ID: 15037109 [TBL] [Abstract][Full Text] [Related]
17. (Cryptic) sex in the microsporidian Nosema granulosis--evidence from parasite rDNA and host mitochondrial DNA. Krebes L; Zeidler L; Frankowski J; Bastrop R Infect Genet Evol; 2014 Jan; 21():259-68. PubMed ID: 24269340 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity of the feminising microsporidian parasite Dictyocoela: new insights into host-specificity, sex and phylogeography. Wilkinson TJ; Rock J; Whiteley NM; Ovcharenko MO; Ironside JE Int J Parasitol; 2011 Aug; 41(9):959-66. PubMed ID: 21683081 [TBL] [Abstract][Full Text] [Related]
19. Cucumispora dikerogammari n. gen. (Fungi: Microsporidia) infecting the invasive amphipod Dikerogammarus villosus: a potential emerging disease in European rivers. Ovcharenko MO; Bacela K; Wilkinson T; Ironside JE; Rigaud T; Wattier RA Parasitology; 2010 Feb; 137(2):191-204. PubMed ID: 19765341 [TBL] [Abstract][Full Text] [Related]
20. Physiological host specificity: a model using the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) and microsporidia of row crop and other stalk-boring hosts. Solter LF; Maddox JV; Vossbrinck CR J Invertebr Pathol; 2005 Oct; 90(2):127-30. PubMed ID: 16214162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]