These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 16697003)
1. Redox regulation of angiotensin II preconditioning of the myocardium requires MAP kinase signaling. Das S; Otani H; Maulik N; Das DK J Mol Cell Cardiol; 2006 Aug; 41(2):248-55. PubMed ID: 16697003 [TBL] [Abstract][Full Text] [Related]
2. Angiotensin preconditioning of the heart: evidence for redox signaling. Das S; Engelman RM; Maulik N; Das DK Cell Biochem Biophys; 2006; 44(1):103-10. PubMed ID: 16456238 [TBL] [Abstract][Full Text] [Related]
3. Preconditioning by angiotensin II: a tale of more than two kinases. Dawn B J Mol Cell Cardiol; 2006 Aug; 41(2):223-5. PubMed ID: 16793059 [No Abstract] [Full Text] [Related]
4. Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Fan WJ; van Vuuren D; Genade S; Lochner A Basic Res Cardiol; 2010 Jul; 105(4):495-511. PubMed ID: 20127248 [TBL] [Abstract][Full Text] [Related]
5. Caveolin and MAP kinase interaction in angiotensin II preconditioning of the myocardium. Das M; Das S; Das DK J Cell Mol Med; 2007; 11(4):788-97. PubMed ID: 17760840 [TBL] [Abstract][Full Text] [Related]
6. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Kimura S; Zhang GX; Nishiyama A; Shokoji T; Yao L; Fan YY; Rahman M; Suzuki T; Maeta H; Abe Y Hypertension; 2005 May; 45(5):860-6. PubMed ID: 15824196 [TBL] [Abstract][Full Text] [Related]
7. Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream target. Nagy N; Shiroto K; Malik G; Huang CK; Gaestel M; Abdellatif M; Tosaki A; Maulik N; Das DK J Mol Cell Cardiol; 2007 May; 42(5):981-90. PubMed ID: 17397860 [TBL] [Abstract][Full Text] [Related]
8. Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways. Das S; Tosaki A; Bagchi D; Maulik N; Das DK J Pharmacol Exp Ther; 2005 Aug; 314(2):762-9. PubMed ID: 15879002 [TBL] [Abstract][Full Text] [Related]
9. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Touyz RM; Cruzado M; Tabet F; Yao G; Salomon S; Schiffrin EL Can J Physiol Pharmacol; 2003 Feb; 81(2):159-67. PubMed ID: 12710530 [TBL] [Abstract][Full Text] [Related]
10. Role of glutaredoxin-1 in cardioprotection: an insight with Glrx1 transgenic and knockout animals. Malik G; Nagy N; Ho YS; Maulik N; Das DK J Mol Cell Cardiol; 2008 Feb; 44(2):261-9. PubMed ID: 17976641 [TBL] [Abstract][Full Text] [Related]
11. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Penna C; Rastaldo R; Mancardi D; Raimondo S; Cappello S; Gattullo D; Losano G; Pagliaro P Basic Res Cardiol; 2006 Mar; 101(2):180-9. PubMed ID: 16450075 [TBL] [Abstract][Full Text] [Related]
12. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. Bell RM; Cave AC; Johar S; Hearse DJ; Shah AM; Shattock MJ FASEB J; 2005 Dec; 19(14):2037-9. PubMed ID: 16236999 [TBL] [Abstract][Full Text] [Related]
13. Role of STAT3 in ischemic preconditioning. Hattori R; Maulik N; Otani H; Zhu L; Cordis G; Engelman RM; Siddiqui MA; Das DK J Mol Cell Cardiol; 2001 Nov; 33(11):1929-36. PubMed ID: 11708838 [TBL] [Abstract][Full Text] [Related]
14. Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinases activation by ischemic preconditioning. Takeishi Y; Huang Q; Wang T; Glassman M; Yoshizumi M; Baines CP; Lee JD; Kawakatsu H; Che W; Lerner-Marmarosh N; Zhang C; Yan C; Ohta S; Walsh RA; Berk BC; Abe J J Mol Cell Cardiol; 2001 Nov; 33(11):1989-2005. PubMed ID: 11708843 [TBL] [Abstract][Full Text] [Related]
15. Role of ceramide in ischemic preconditioning. Cui J; Engelman RM; Maulik N; Das DK J Am Coll Surg; 2004 May; 198(5):770-7. PubMed ID: 15110811 [TBL] [Abstract][Full Text] [Related]
16. Generation of survival signal by differential interaction of p38MAPKalpha and p38MAPKbeta with caveolin-1 and caveolin-3 in the adapted heart. Das M; Cui J; Das DK J Mol Cell Cardiol; 2007 Jan; 42(1):206-13. PubMed ID: 17069850 [TBL] [Abstract][Full Text] [Related]
17. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Chan SH; Hsu KS; Huang CC; Wang LL; Ou CC; Chan JY Circ Res; 2005 Oct; 97(8):772-80. PubMed ID: 16151022 [TBL] [Abstract][Full Text] [Related]
18. Role of reactive oxygen species (ROS) in angiotensin II-induced stimulation of the cardiac Na+/HCO3- cotransport. De Giusti VC; Garciarena CD; Aiello EA J Mol Cell Cardiol; 2009 Nov; 47(5):716-22. PubMed ID: 19646989 [TBL] [Abstract][Full Text] [Related]
19. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation. Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144 [TBL] [Abstract][Full Text] [Related]
20. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Hingtgen SD; Tian X; Yang J; Dunlay SM; Peek AS; Wu Y; Sharma RV; Engelhardt JF; Davisson RL Physiol Genomics; 2006 Aug; 26(3):180-91. PubMed ID: 16670255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]