These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16697007)

  • 1. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase.
    Kuhn D; Weskamp N; Schmitt S; Hüllermeier E; Klebe G
    J Mol Biol; 2006 Jun; 359(4):1023-44. PubMed ID: 16697007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional classification of protein kinase binding sites using Cavbase.
    Kuhn D; Weskamp N; Hüllermeier E; Klebe G
    ChemMedChem; 2007 Oct; 2(10):1432-47. PubMed ID: 17694525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale mining for similar protein binding pockets: with RAPMAD retrieval on the fly becomes real.
    Krotzky T; Grunwald C; Egerland U; Klebe G
    J Chem Inf Model; 2015 Jan; 55(1):165-79. PubMed ID: 25474400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging chemical and biological space: Structural mapping of enzyme binding pocket space.
    Weskamp N; Hüllermeier E; Klebe G
    Proteins; 2009 Aug; 76(2):317-30. PubMed ID: 19173307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to detect related function among proteins independent of sequence and fold homology.
    Schmitt S; Kuhn D; Klebe G
    J Mol Biol; 2002 Oct; 323(2):387-406. PubMed ID: 12381328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.
    Stegemann B; Klebe G
    Proteins; 2012 Feb; 80(2):626-48. PubMed ID: 22095739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavities tell more than sequences: exploring functional relationships of proteases via binding pockets.
    Glinca S; Klebe G
    J Chem Inf Model; 2013 Aug; 53(8):2082-92. PubMed ID: 23834203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting gene ontology functions from protein's regional surface structures.
    Liu ZP; Wu LY; Wang Y; Chen L; Zhang XS
    BMC Bioinformatics; 2007 Dec; 8():475. PubMed ID: 18070366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional prediction of binding pockets.
    Kontoyianni M; Rosnick CB
    J Chem Inf Model; 2012 Mar; 52(3):824-33. PubMed ID: 22352431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of ligand-binding cavities in proteins.
    Andersson CD; Chen BY; Linusson A
    Proteins; 2010 May; 78(6):1408-22. PubMed ID: 20034113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites.
    Binkowski TA; Joachimiak A
    BMC Struct Biol; 2008 Oct; 8():45. PubMed ID: 18954462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition.
    Weber A; Casini A; Heine A; Kuhn D; Supuran CT; Scozzafava A; Klebe G
    J Med Chem; 2004 Jan; 47(3):550-7. PubMed ID: 14736236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.
    Sael L; Kihara D
    Proteins; 2012 Apr; 80(4):1177-95. PubMed ID: 22275074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design.
    Eguida M; Rognan D
    J Med Chem; 2020 Jul; 63(13):7127-7142. PubMed ID: 32496770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.
    Krotzky T; Fober T; Hüllermeier E; Klebe G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):878-90. PubMed ID: 26356860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding site similarity analysis for the functional classification of the protein kinase family.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Feb; 49(2):318-29. PubMed ID: 19434833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.