These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 16697009)
1. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily. Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009 [TBL] [Abstract][Full Text] [Related]
2. The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. Wilmann PG; Turcic K; Battad JM; Wilce MC; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Nov; 364(2):213-24. PubMed ID: 17010376 [TBL] [Abstract][Full Text] [Related]
3. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. Wilmann PG; Petersen J; Pettikiriarachchi A; Buckle AM; Smith SC; Olsen S; Perugini MA; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2005 May; 349(1):223-37. PubMed ID: 15876379 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for red-shifted emission of a GFP-like protein from the marine copepod Chiridius poppei. Suto K; Masuda H; Takenaka Y; Tsuji FI; Mizuno H Genes Cells; 2009 Jun; 14(6):727-37. PubMed ID: 19469881 [TBL] [Abstract][Full Text] [Related]
5. The role of the protein matrix in green fluorescent protein fluorescence. Maddalo SL; Zimmer M Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a new cyan fluorescent protein and its hue-shifted variants. Kikuchi A; Fukumura E; Karasawa S; Shiro Y; Miyawaki A Biochemistry; 2009 Jun; 48(23):5276-83. PubMed ID: 19402703 [TBL] [Abstract][Full Text] [Related]
7. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211 [TBL] [Abstract][Full Text] [Related]
8. Denaturation studies reveal significant differences between GFP and blue fluorescent protein. Saeed IA; Ashraf SS Int J Biol Macromol; 2009 Oct; 45(3):236-41. PubMed ID: 19501614 [TBL] [Abstract][Full Text] [Related]
9. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
10. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Wall MA; Socolich M; Ranganathan R Nat Struct Biol; 2000 Dec; 7(12):1133-8. PubMed ID: 11101896 [TBL] [Abstract][Full Text] [Related]
13. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826 [TBL] [Abstract][Full Text] [Related]
14. Can the fluorescence of green fluorescent protein chromophore be related directly to the nativity of protein structure? Melnik BS; Povarnitsyna TV; Melnik TN Biochem Biophys Res Commun; 2009 Dec; 390(4):1167-70. PubMed ID: 19861120 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Tubbs JL; Tainer JA; Getzoff ED Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155 [TBL] [Abstract][Full Text] [Related]
16. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981 [TBL] [Abstract][Full Text] [Related]
17. Function and structure of GFP-like proteins in the protein data bank. Ong WJ; Alvarez S; Leroux IE; Shahid RS; Samma AA; Peshkepija P; Morgan AL; Mulcahy S; Zimmer M Mol Biosyst; 2011 Apr; 7(4):984-92. PubMed ID: 21298165 [TBL] [Abstract][Full Text] [Related]
18. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Rosenow MA; Patel HN; Wachter RM Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620 [TBL] [Abstract][Full Text] [Related]
19. Excited states of GFP chromophore and active site studied by the SAC-CI method: effect of protein-environment and mutations. Hasegawa JY; Fujimoto K; Swerts B; Miyahara T; Nakatsuji H J Comput Chem; 2007 Nov; 28(15):2443-52. PubMed ID: 17721879 [TBL] [Abstract][Full Text] [Related]
20. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation. Patnaik SS; Trohalaki S; Pachter R Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]