BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 16697013)

  • 1. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine.
    Fukunaga R; Fukai S; Ishitani R; Nureki O; Yokoyama S
    J Biol Chem; 2004 Feb; 279(9):8396-402. PubMed ID: 14672940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates.
    Bharatham N; Bharatham K; Lee Y; Woo Lee K
    Biophys Chem; 2009 Jul; 143(1-2):34-43. PubMed ID: 19398261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary X-ray crystallographic study of the editing domain of Thermus thermophilus isoleucyl-tRNA synthetase complexed with pre- and post-transfer editing-substrate analogues.
    Fukunaga R; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1900-2. PubMed ID: 15388946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis suggests the same design for editing activities of two tRNA synthetases.
    Lin L; Schimmel P
    Biochemistry; 1996 Apr; 35(17):5596-601. PubMed ID: 8611551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin.
    Silvian LF; Wang J; Steitz TA
    Science; 1999 Aug; 285(5430):1074-7. PubMed ID: 10446055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues.
    Zivkovic I; Moschner J; Koksch B; Gruic-Sovulj I
    FEBS J; 2020 Feb; 287(4):800-813. PubMed ID: 31486189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation.
    Tukalo M; Yaremchuk A; Fukunaga R; Yokoyama S; Cusack S
    Nat Struct Mol Biol; 2005 Oct; 12(10):923-30. PubMed ID: 16155583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases.
    Nordin BE; Schimmel P
    Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase.
    Mursinna RS; Lee KW; Briggs JM; Martinis SA
    Biochemistry; 2004 Jan; 43(1):155-65. PubMed ID: 14705941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.
    Bishop AC; Nomanbhoy TK; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):585-90. PubMed ID: 11782529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain.
    Fukunaga R; Yokoyama S
    J Biol Chem; 2005 Aug; 280(33):29937-45. PubMed ID: 15970591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA
    Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase.
    Yaremchuk A; Tukalo M; Grøtli M; Cusack S
    J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase.
    Fukai S; Nureki O; Sekine S; Shimada A; Tao J; Vassylyev DG; Yokoyama S
    Cell; 2000 Nov; 103(5):793-803. PubMed ID: 11114335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fidelity of the translation of the genetic code.
    Sankaranarayanan R; Moras D
    Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.