These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 16697013)
1. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. Fukunaga R; Yokoyama S J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. Fukunaga R; Fukai S; Ishitani R; Nureki O; Yokoyama S J Biol Chem; 2004 Feb; 279(9):8396-402. PubMed ID: 14672940 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates. Bharatham N; Bharatham K; Lee Y; Woo Lee K Biophys Chem; 2009 Jul; 143(1-2):34-43. PubMed ID: 19398261 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
5. Crystallization and preliminary X-ray crystallographic study of the editing domain of Thermus thermophilus isoleucyl-tRNA synthetase complexed with pre- and post-transfer editing-substrate analogues. Fukunaga R; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1900-2. PubMed ID: 15388946 [TBL] [Abstract][Full Text] [Related]
6. Mutational analysis suggests the same design for editing activities of two tRNA synthetases. Lin L; Schimmel P Biochemistry; 1996 Apr; 35(17):5596-601. PubMed ID: 8611551 [TBL] [Abstract][Full Text] [Related]
7. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Silvian LF; Wang J; Steitz TA Science; 1999 Aug; 285(5430):1074-7. PubMed ID: 10446055 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R; Yokoyama S J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of discrimination of isoleucyl-tRNA synthetase against nonproteinogenic α-aminobutyrate and its fluorinated analogues. Zivkovic I; Moschner J; Koksch B; Gruic-Sovulj I FEBS J; 2020 Feb; 287(4):800-813. PubMed ID: 31486189 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Tukalo M; Yaremchuk A; Fukunaga R; Yokoyama S; Cusack S Nat Struct Mol Biol; 2005 Oct; 12(10):923-30. PubMed ID: 16155583 [TBL] [Abstract][Full Text] [Related]
11. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases. Nordin BE; Schimmel P Biochemistry; 2003 Nov; 42(44):12989-97. PubMed ID: 14596614 [TBL] [Abstract][Full Text] [Related]
12. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Mursinna RS; Lee KW; Briggs JM; Martinis SA Biochemistry; 2004 Jan; 43(1):155-65. PubMed ID: 14705941 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain. Fukunaga R; Yokoyama S J Biol Chem; 2005 Aug; 280(33):29937-45. PubMed ID: 15970591 [TBL] [Abstract][Full Text] [Related]
14. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409 [TBL] [Abstract][Full Text] [Related]
15. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. Yaremchuk A; Tukalo M; Grøtli M; Cusack S J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074 [TBL] [Abstract][Full Text] [Related]
16. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA. Roy H; Ibba M Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361 [TBL] [Abstract][Full Text] [Related]
17. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. Cvetesic N; Bilus M; Gruic-Sovulj I J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Fukai S; Nureki O; Sekine S; Shimada A; Tao J; Vassylyev DG; Yokoyama S Cell; 2000 Nov; 103(5):793-803. PubMed ID: 11114335 [TBL] [Abstract][Full Text] [Related]
19. The fidelity of the translation of the genetic code. Sankaranarayanan R; Moras D Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604 [TBL] [Abstract][Full Text] [Related]
20. Structural modelling of the complex of leucyl-tRNA synthetase and mis-aminoacylated tRNALeu. Hagiwara Y; Nureki O; Tateno M FEBS Lett; 2009 Feb; 583(4):825-30. PubMed ID: 19640470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]