These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16697422)

  • 1. Antagonistic activity of one-joint muscles in three-dimensions using non-linear optimisation.
    Jinha A; Ait-Haddou R; Binding P; Herzog W
    Math Biosci; 2006 Jul; 202(1):57-70. PubMed ID: 16697422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extension of a state-of-the-art optimization criterion to predict co-contraction.
    Forster E; Simon U; Augat P; Claes L
    J Biomech; 2004 Apr; 37(4):577-81. PubMed ID: 14996571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity-dependent cost function for the prediction of force sharing among synergistic muscles in a one degree of freedom model.
    Schappacher-Tilp G; Binding P; Braverman E; Herzog W
    J Biomech; 2009 Mar; 42(5):657-60. PubMed ID: 19232619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.
    Komura T; Prokopow P; Nagano A
    J Biomech; 2004 Apr; 37(4):425-36. PubMed ID: 14996554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction dynamics in antagonist muscles.
    Minetti AE
    J Theor Biol; 1994 Aug; 169(3):295-304. PubMed ID: 7967621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inability to establish a single equilibrium value for the angle of a joint and its relation to the hysteretic properties of muscle contraction].
    Kostiukov AI
    Neirofiziologiia; 1986; 18(5):699-701. PubMed ID: 3774069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocontraction of pairs of antagonistic muscles: analytical solution for planar static nonlinear optimization approaches.
    Herzog W; Binding P
    Math Biosci; 1993 Nov; 118(1):83-95. PubMed ID: 8260761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle forces predicted using optimization methods are coordinate system dependent.
    Pierce JE; Li G
    J Biomech; 2005 Apr; 38(4):695-702. PubMed ID: 15713289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions of antagonistic muscular activity using nonlinear optimization.
    Herzog W; Binding P
    Math Biosci; 1992 Oct; 111(2):217-29. PubMed ID: 1515744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global optimization method for prediction of muscle forces of human musculoskeletal system.
    Li G; Pierce JE; Herndon JH
    J Biomech; 2006; 39(3):522-9. PubMed ID: 16389092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quasi-static three-dimensional, mathematical, three-body segment model of the canine knee.
    Shahar R; Banks-Sills L
    J Biomech; 2004 Dec; 37(12):1849-59. PubMed ID: 15519593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.