These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16698263)

  • 1. Anaerobic digestion of cattail with rumen culture in the presence of heavy metals.
    Yue ZB; Yu HQ; Wang ZL
    Bioresour Technol; 2007 Mar; 98(4):781-6. PubMed ID: 16698263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example.
    Zhao BH; Yue ZB; Ni BJ; Mu Y; Yu HQ; Harada H
    Water Res; 2009 Apr; 43(7):2047-55. PubMed ID: 19297004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge.
    Altaş L
    J Hazard Mater; 2009 Mar; 162(2-3):1551-6. PubMed ID: 18640779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic digestion of cattail by rumen cultures.
    Hu ZH; Yu HQ
    Waste Manag; 2006; 26(11):1222-8. PubMed ID: 16198552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of response surface methodology for optimization of acidogenesis of cattail by rumen cultures.
    Hu ZH; Yu HQ; Zheng JC
    Bioresour Technol; 2006 Nov; 97(16):2103-9. PubMed ID: 16289873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.
    Mishra VK; Tripathi BD
    Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive accumulation patterns of Cd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis).
    Carriquiriborde P; Ronco AE
    Aquat Toxicol; 2008 Jan; 86(2):313-22. PubMed ID: 18160111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor.
    Colussi I; Cortesi A; Della Vedova L; Gallo V; Robles FK
    Bioresour Technol; 2009 Dec; 100(24):6290-4. PubMed ID: 19679466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage anaerobic digestion enables heavy metal removal.
    Selling R; Håkansson T; Björnsson L
    Water Sci Technol; 2008; 57(4):553-8. PubMed ID: 18359995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.
    Bonfranceschi BA; Flocco CG; Donati ER
    J Hazard Mater; 2009 Jun; 165(1-3):366-71. PubMed ID: 19010592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of six different sludges by sequential speciation of heavy metals.
    Fuentes A; Lloréns M; Sáez J; Isabel Aguilar MA; Ortuño JF; Meseguer VF
    Bioresour Technol; 2008 Feb; 99(3):517-25. PubMed ID: 17368888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.
    Rakhshaee R; Giahi M; Pourahmad A
    J Hazard Mater; 2009 Apr; 163(1):165-73. PubMed ID: 18722059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves.
    Sangi MR; Shahmoradi A; Zolgharnein J; Azimi GH; Ghorbandoost M
    J Hazard Mater; 2008 Jul; 155(3):513-22. PubMed ID: 18191021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heavy metals on nitrification performance in different activated sludge processes.
    You SJ; Tsai YP; Huang RY
    J Hazard Mater; 2009 Jun; 165(1-3):987-94. PubMed ID: 19084333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of heavy metals on fermentative hydrogen production by granular sludge.
    Li C; Fang HH
    Chemosphere; 2007 Mar; 67(4):668-73. PubMed ID: 17182079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.
    Oliveira WE; Franca AS; Oliveira LS; Rocha SD
    J Hazard Mater; 2008 Apr; 152(3):1073-81. PubMed ID: 17804159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.
    Guo H; Luo S; Chen L; Xiao X; Xi Q; Wei W; Zeng G; Liu C; Wan Y; Chen J; He Y
    Bioresour Technol; 2010 Nov; 101(22):8599-605. PubMed ID: 20637605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures.
    Yue ZB; Yu HQ; Harada H; Li YY
    Water Res; 2007 Jun; 41(11):2361-70. PubMed ID: 17434201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.