BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16698777)

  • 1. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation.
    Clair B; Alméras T; Yamamoto H; Okuyama T; Sugiyama J
    Biophys J; 2006 Aug; 91(3):1128-35. PubMed ID: 16698777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
    Clair B; Alméras T; Pilate G; Jullien D; Sugiyama J; Riekel C
    Plant Physiol; 2010 Mar; 152(3):1650-8. PubMed ID: 20071605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
    Clair B; Alméras T; Pilate G; Jullien D; Sugiyama J; Riekel C
    Plant Physiol; 2011 Jan; 155(1):562-70. PubMed ID: 21068364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation.
    Kölln K; Grotkopp I; Burghammer M; Roth SV; Funari SS; Dommach M; Müller M
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):739-44. PubMed ID: 16239742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose lattice strains and stress transfer in native and delignified wood.
    Spies PA; Keplinger T; Horbelt N; Reppe F; Scoppola E; Eder M; Fratzl P; Burgert I; Rüggeberg M
    Carbohydr Polym; 2022 Nov; 296():119922. PubMed ID: 36087976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic disorder along ramie cellulose microfibrils.
    Nishiyama Y; Kim UJ; Kim DY; Katsumata KS; May RP; Langan P
    Biomacromolecules; 2003; 4(4):1013-7. PubMed ID: 12857086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Sections of Nanocellulose from Wood Analyzed by Quantized Polydispersity of Elementary Microfibrils.
    Rosén T; He H; Wang R; Zhan C; Chodankar S; Fall A; Aulin C; Larsson PT; Lindström T; Hsiao BS
    ACS Nano; 2020 Dec; 14(12):16743-16754. PubMed ID: 33253525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in the fibre repeat between samples of cellulose I from different sources.
    Davidson TC; Newman RH; Ryan MJ
    Carbohydr Res; 2004 Dec; 339(18):2889-93. PubMed ID: 15582616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of cellulose in birch phloem fibres in tension wood: an X-ray nanodiffraction study.
    Viljanen M; Muranen S; Kinnunen O; Kalbfleisch S; Svedström K
    Plant Methods; 2023 Jun; 19(1):58. PubMed ID: 37328911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants.
    Tai HC; Chang CH; Cai W; Lin JH; Huang SJ; Lin QY; Yuan EC; Li SL; Lin YJ; Chan JCC; Tsao CS
    Nat Plants; 2023 Jul; 9(7):1154-1168. PubMed ID: 37349550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na-cellulose formation in a single cotton fiber studied by synchrotron radiation microdiffraction.
    Schoeck J; Davies RJ; Martel A; Riekel C
    Biomacromolecules; 2007 Feb; 8(2):602-10. PubMed ID: 17256987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converse piezoelectric effect in cellulose I revealed by wide-angle X-ray diffraction.
    Gindl W; Emsenhuber G; Plackner J; Konnerth J; Keckes J
    Biomacromolecules; 2010 May; 11(5):1281-5. PubMed ID: 20353195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles.
    Paajanen A; Zitting A; Rautkari L; Ketoja JA; Penttilä PA
    Nano Lett; 2022 Jul; 22(13):5143-5150. PubMed ID: 35767745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the hierarchical structure of biological tissues by scanning X-ray scattering using a micro-beam.
    Paris O; Zizak I; Lichtenegger H; Roschger P; Klaushofer K; Fratzl P
    Cell Mol Biol (Noisy-le-grand); 2000 Jul; 46(5):993-1004. PubMed ID: 10976879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses.
    Thomas LH; Forsyth VT; Martel A; Grillo I; Altaner CM; Jarvis MC
    BMC Plant Biol; 2015 Jun; 15():153. PubMed ID: 26099632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the structural change during deformation in Cryptomeria japonica by time-resolved synchrotron small-angle X-ray scattering.
    Kamiyama T; Suzuki H; Sugiyama J
    J Struct Biol; 2005 Jul; 151(1):1-11. PubMed ID: 15963733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.