These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site. Buttlaire DH; Reed GH; Himes R J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989 [TBL] [Abstract][Full Text] [Related]
3. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism. McLaughlin AC; Leigh JS; Cohn M J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance studies on manganese-nucleotide complexes of phosphoglycerate kinase. Chapman BE; O'Sullivan WJ; Scopes RK; Reed GH Biochemistry; 1977 Mar; 16(5):1005-10. PubMed ID: 321006 [TBL] [Abstract][Full Text] [Related]
5. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons. Buttlaire DH; Chon M J Biol Chem; 1977 Mar; 252(6):1957-64. PubMed ID: 321448 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
7. Investigations of equilibrium complexes of myoxin subfragment 1 with the manganous ion and adenosine diphosphate using magnetic resonance techniques. Bagshow CR; Reed GH J Biol Chem; 1976 Apr; 251(7):1975-83. PubMed ID: 178650 [TBL] [Abstract][Full Text] [Related]
8. Studies of manganous nucleotide complexes with uridine diphosphate-glucose pyrophosphorylase, formyltetrahydrofolate synthetase, and creatine kinase. Mechanism of water proton magnetic relaxation from frequency dependent measurements. Reed GH; Diefenbach H; Cohn M J Biol Chem; 1972 May; 247(10):3066-72. PubMed ID: 5027742 [No Abstract] [Full Text] [Related]
9. Magnetic resonance studies of three forms of creatine kinase. Comparison of the properties of native, CH-S-blocked, and H2NCOCH-blocked enzymes. Markham GD; Reed GH J Biol Chem; 1977 Feb; 252(4):1197-201. PubMed ID: 838713 [TBL] [Abstract][Full Text] [Related]
10. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):544-53. PubMed ID: 3200 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance studies of formyltetrahydrofolate synthetase interactions with formate and methylammonium ion. Wendland MF; Stevens TH; Buttlaire DH; Everett GW; Himes RH Biochemistry; 1983 Feb; 22(4):819-26. PubMed ID: 6838826 [TBL] [Abstract][Full Text] [Related]
12. Conformation of manganese(II)-nucleotide complexes bound to rabbit muscle creatine kinase: 13C NMR measurements using [2-13C]ATP and [2-13C]ADP. Ray BD; Chau MH; Fife WK; Jarori GK; Rao BD Biochemistry; 1996 Jun; 35(22):7239-46. PubMed ID: 8679553 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu. Wilson GE; Cohn M J Biol Chem; 1977 Mar; 252(6):2004-9. PubMed ID: 191448 [TBL] [Abstract][Full Text] [Related]
14. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: relaxation measurements with Mn(II) and Co(II). Jarori GK; Ray BD; Nageswara Rao BD Biochemistry; 1989 Nov; 28(24):9343-50. PubMed ID: 2558717 [TBL] [Abstract][Full Text] [Related]
15. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828 [TBL] [Abstract][Full Text] [Related]
16. Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II). Jarori GK; Ray BD; Nageswara Rao BD Biochemistry; 1985 Jul; 24(14):3487-94. PubMed ID: 4041424 [TBL] [Abstract][Full Text] [Related]
17. Nuclear magnetic resonance relaxation studies of the interaction of ligands with the monomer and tetramer forms of formyltetrahydrofolate synthetase. Yeh CH; Hanna DA; Everett GW; Himes RH Biochem J; 1988 Apr; 251(1):89-93. PubMed ID: 3390163 [TBL] [Abstract][Full Text] [Related]
18. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex. Gupta RK; Fung CH; Mildvan AS J Biol Chem; 1976 Apr; 251(8):2421-30. PubMed ID: 177415 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases. Cohn M Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046 [TBL] [Abstract][Full Text] [Related]
20. Involvement of a divalent cation in the binding of fructose 6-phosphate to Trypanosoma cruzi phosphofructokinase: kinetic and magnetic resonance studies. Urbina JA; Ysern X; Mildvan AS Arch Biochem Biophys; 1990 Apr; 278(1):187-94. PubMed ID: 2138869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]