These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 166989)
21. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study. Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415 [TBL] [Abstract][Full Text] [Related]
22. Nuclear magnetic resonance relaxation studies of the interaction of ligands with the monomer and tetramer forms of formyltetrahydrofolate synthetase. Yeh CH; Hanna DA; Everett GW; Himes RH Biochem J; 1988 Apr; 251(1):89-93. PubMed ID: 3390163 [TBL] [Abstract][Full Text] [Related]
23. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. Zukin RS; Hollis DP J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241 [TBL] [Abstract][Full Text] [Related]
24. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
25. Coordination scheme and stereochemical configuration of manganese(II) adenosine 5'-diphosphate at the active site of 3-phosphoglycerate kinase. Moore JM; Reed GH Biochemistry; 1985 Sep; 24(20):5328-33. PubMed ID: 3000431 [TBL] [Abstract][Full Text] [Related]
26. Formyltetrahydrofolate synthetase-catalyzed formation of ATP from carbamyl phosphate and ADP. Evidence for a formyl phosphate intermediate in the enzyme's catalytic mechanism. Buttlaire DH; Himes RH; Reed GH J Biol Chem; 1976 Jul; 251(13):4159-61. PubMed ID: 932026 [TBL] [Abstract][Full Text] [Related]
27. Binding of ATP as well as tetrahydrofolate induces conformational changes in Lactobacillus casei folylpolyglutamate synthetase in solution. Sheng Y; Ip H; Liu J; Davidson A; Bognar AL Biochemistry; 2003 Feb; 42(6):1537-43. PubMed ID: 12578366 [TBL] [Abstract][Full Text] [Related]
28. Conformation of manganese(II)-nucleotide complexes bound to rabbit muscle creatine kinase: 13C NMR measurements using [2-13C]ATP and [2-13C]ADP. Ray BD; Chau MH; Fife WK; Jarori GK; Rao BD Biochemistry; 1996 Jun; 35(22):7239-46. PubMed ID: 8679553 [TBL] [Abstract][Full Text] [Related]
29. Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II). Jarori GK; Ray BD; Nageswara Rao BD Biochemistry; 1985 Jul; 24(14):3487-94. PubMed ID: 4041424 [TBL] [Abstract][Full Text] [Related]
30. Electron-paramagnetic-resonance studies of manganese(II) complexes with elongation factor Tu from Bacillus stearothermophilus. Observation of a GTP hydrolysis intermediate state complex. Kalbitzer HR; Goody RS; Wittinghofer A Eur J Biochem; 1984 Jun; 141(3):591-7. PubMed ID: 6086334 [TBL] [Abstract][Full Text] [Related]
31. Mn2+-adenosine nucleotide complexes in the presence of the nitrogenase iron-protein: detection of conformational rearrangements directly at the nucleotide binding site by EPR and 2D-ESEEM (two-dimensional electron spin-echo envelope modulation spectroscopy). Petersen J; Gessner C; Fisher K; Mitchell CJ; Lowe DJ; Lubitz W Biochem J; 2005 Nov; 391(Pt 3):527-39. PubMed ID: 15966871 [TBL] [Abstract][Full Text] [Related]
33. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes. Reed GH; Cohn M J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505 [No Abstract] [Full Text] [Related]
34. Formyltetrahydrofolate synthetase. Binding of folate substrates and kinetics of the reverse reaction. Curthoys NP; Rabinowitz JC J Biol Chem; 1972 Apr; 247(7):1965-71. PubMed ID: 5016638 [No Abstract] [Full Text] [Related]
35. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis. Maggio ET; Kenyon GL; Mildvan AS; Hegeman GD Biochemistry; 1975 Mar; 14(6):1131-9. PubMed ID: 164210 [TBL] [Abstract][Full Text] [Related]
36. Substrate activity of synthetic formyl phosphate in the reaction catalyzed by formyltetrahydrofolate synthetase. Smithers GW; Jahansouz H; Kofron JL; Himes RH; Reed GH Biochemistry; 1987 Jun; 26(13):3943-8. PubMed ID: 3651425 [TBL] [Abstract][Full Text] [Related]
37. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes. Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462 [TBL] [Abstract][Full Text] [Related]
38. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements. James TL Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086 [TBL] [Abstract][Full Text] [Related]
39. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: relaxation measurements with Mn(II) and Co(II). Jarori GK; Ray BD; Nageswara Rao BD Biochemistry; 1989 Nov; 28(24):9343-50. PubMed ID: 2558717 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate. Huang W; Jia J; Gibson KJ; Taylor WS; Rendina AR; Schneider G; Lindqvist Y Biochemistry; 1995 Sep; 34(35):10985-95. PubMed ID: 7669756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]