These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16699176)

  • 21. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K.
    Chukhutsina VU; Büchel C; van Amerongen H
    Biochim Biophys Acta; 2014 Jun; 1837(6):899-907. PubMed ID: 24582663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?
    van de Poll WH; Buma AG
    Photochem Photobiol Sci; 2009 Sep; 8(9):1295-301. PubMed ID: 19707617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma.
    Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B
    Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms.
    Lavaud J; Rousseau B; Etienne AL
    Biochemistry; 2003 May; 42(19):5802-8. PubMed ID: 12741838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation.
    Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A
    Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms.
    Roháček K; Bertrand M; Moreau B; Jacquette B; Caplat C; Morant-Manceau A; Schoefs B
    Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130241. PubMed ID: 24591721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.
    Giovagnetti V; Flori S; Tramontano F; Lavaud J; Brunet C
    PLoS One; 2014; 9(8):e103782. PubMed ID: 25083713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms.
    Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR
    Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states.
    Nabe H; Funabiki R; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2007 Nov; 48(11):1548-57. PubMed ID: 17908696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes.
    Blommaert L; Chafai L; Bailleul B
    Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T; Miller R; Aigner S; Kranner I
    Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.
    Chen Z; Gallie DR
    PLoS One; 2015; 10(12):e0144209. PubMed ID: 26630486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation.
    Kotabová E; Kaňa R; Jarešová J; Prášil O
    FEBS Lett; 2011 Jun; 585(12):1941-5. PubMed ID: 21570974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop.
    Belgio E; Duffy CD; Ruban AV
    Phys Chem Chem Phys; 2013 Aug; 15(29):12253-61. PubMed ID: 23771239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The photoprotective molecular switch in the photosystem II antenna.
    Ruban AV; Johnson MP; Duffy CD
    Biochim Biophys Acta; 2012 Jan; 1817(1):167-81. PubMed ID: 21569757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology.
    Lacour T; Babin M; Lavaud J
    J Phycol; 2020 Apr; 56(2):245-263. PubMed ID: 31674660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae.
    Goss R; Ann Pinto E; Wilhelm C; Richter M
    J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants.
    García-Mendoza E; Colombo-Pallotta MF
    New Phytol; 2007; 173(3):526-536. PubMed ID: 17244047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodiversity of NPQ.
    Goss R; Lepetit B
    J Plant Physiol; 2015 Jan; 172():13-32. PubMed ID: 24854581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.