BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16699181)

  • 21. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo enzymatic protein biotinylation.
    Chapman-Smith A; Cronan JE
    Biomol Eng; 1999 Dec; 16(1-4):119-25. PubMed ID: 10796994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure of the lipoyl domain of the chimeric dihydrolipoyl dehydrogenase P64K from Neisseria meningitidis.
    Tozawa K; Broadhurst RW; Raine AR; Fuller C; Alvarez A; Guillen G; Padron G; Perham RN
    Eur J Biochem; 2001 Sep; 268(18):4908-17. PubMed ID: 11559360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli.
    Green JD; Laue ED; Perham RN; Ali ST; Guest JR
    J Mol Biol; 1995 Apr; 248(2):328-43. PubMed ID: 7739044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A conserved regulatory mechanism in bifunctional biotin protein ligases.
    Wang J; Beckett D
    Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipoic acid attachment to proteins: stimulating new developments.
    Cronan JE
    Microbiol Mol Biol Rev; 2024 Jun; 88(2):e0000524. PubMed ID: 38624243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity.
    Chapman-Smith A; Cronan JE
    Trends Biochem Sci; 1999 Sep; 24(9):359-63. PubMed ID: 10470036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional structure in solution of the N-terminal lipoyl domain of the pyruvate dehydrogenase complex from Azotobacter vinelandii.
    Berg A; Vervoort J; de Kok A
    Eur J Biochem; 1997 Mar; 244(2):352-60. PubMed ID: 9119000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii.
    Berg A; Vervoort J; de Kok A
    J Mol Biol; 1996 Aug; 261(3):432-42. PubMed ID: 8780784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The amidase domain of lipoamidase specifically inactivates lipoylated proteins in vivo.
    Spalding MD; Prigge ST
    PLoS One; 2009 Oct; 4(10):e7392. PubMed ID: 19812687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recombinant expression and evaluation of the lipoyl domains of the dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex.
    Liu S; Baker JC; Andrews PC; Roche TE
    Arch Biochem Biophys; 1995 Feb; 316(2):926-40. PubMed ID: 7864652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis.
    Casteel J; Miernyk JA; Thelen JJ
    Plant Physiol Biochem; 2011 Nov; 49(11):1355-61. PubMed ID: 21798751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity determinants for the pyruvate dehydrogenase component reaction mapped with mutated and prosthetic group modified lipoyl domains.
    Gong X; Peng T; Yakhnin A; Zolkiewski M; Quinn J; Yeaman SJ; Roche TE
    J Biol Chem; 2000 May; 275(18):13645-53. PubMed ID: 10788482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of a surface loop of the lipoyl domain underlies substrate channelling in the pyruvate dehydrogenase multienzyme complex.
    Wallis NG; Allen MD; Broadhurst RW; Lessard IA; Perham RN
    J Mol Biol; 1996 Nov; 263(3):463-74. PubMed ID: 8918601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct modes of recognition of the lipoyl domain as substrate by the E1 and E3 components of the pyruvate dehydrogenase multienzyme complex.
    Fries M; Stott KM; Reynolds S; Perham RN
    J Mol Biol; 2007 Feb; 366(1):132-9. PubMed ID: 17157320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the "thumb" structure id essential and that the domain functions as a dimer.
    Cronan JE
    J Biol Chem; 2001 Oct; 276(40):37355-64. PubMed ID: 11495922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular biology of biotin attachment to proteins.
    Chapman-Smith A; Cronan JE
    J Nutr; 1999 Feb; 129(2S Suppl):477S-484S. PubMed ID: 10064313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.
    Dardel F; Davis AL; Laue ED; Perham RN
    J Mol Biol; 1993 Feb; 229(4):1037-48. PubMed ID: 8445635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy.
    Roberts EL; Shu N; Howard MJ; Broadhurst RW; Chapman-Smith A; Wallace JC; Morris T; Cronan JE; Perham RN
    Biochemistry; 1999 Apr; 38(16):5045-53. PubMed ID: 10213607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.