BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 16700535)

  • 1. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies.
    Li E; Hristova K
    Biochemistry; 2006 May; 45(20):6241-51. PubMed ID: 16700535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics.
    Li E; Hristova K
    Cell Adh Migr; 2010; 4(2):249-54. PubMed ID: 20168077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications.
    Iwamoto T; You M; Li E; Spangler J; Tomich JM; Hristova K
    Biochim Biophys Acta; 2005 Mar; 1668(2):240-7. PubMed ID: 15737335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation.
    Li E; You M; Hristova K
    J Mol Biol; 2006 Feb; 356(3):600-12. PubMed ID: 16384584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method.
    Merzlyakov M; Chen L; Hristova K
    J Membr Biol; 2007 Feb; 215(2-3):93-103. PubMed ID: 17565424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions.
    Finger C; Escher C; Schneider D
    Sci Signal; 2009 Sep; 2(89):ra56. PubMed ID: 19797273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain.
    He L; Shobnam N; Hristova K
    Biochim Biophys Acta; 2011 Jan; 1808(1):253-9. PubMed ID: 20713021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.
    Sarabipour S; Del Piccolo N; Hristova K
    Acc Chem Res; 2015 Aug; 48(8):2262-9. PubMed ID: 26244699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation.
    He L; Hoffmann AR; Serrano C; Hristova K; Wimley WC
    J Mol Biol; 2011 Sep; 412(1):43-54. PubMed ID: 21767549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoinhibitory mechanisms in receptor tyrosine kinases.
    Hubbard SR
    Front Biosci; 2002 Feb; 7():d330-40. PubMed ID: 11815286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.
    Sawma P; Roth L; Blanchard C; Bagnard D; Crémel G; Bouveret E; Duneau JP; Sturgis JN; Hubert P
    J Mol Biol; 2014 Dec; 426(24):4099-4111. PubMed ID: 25315821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation-introduced dimerization of receptor tyrosine kinases: from protein structure aberrations to carcinogenesis.
    Hu H; Liu Y; Jiang T
    Tumour Biol; 2015 Mar; 36(3):1423-8. PubMed ID: 25750036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase.
    Bell CA; Tynan JA; Hart KC; Meyer AN; Robertson SC; Donoghue DJ
    Mol Biol Cell; 2000 Oct; 11(10):3589-99. PubMed ID: 11029057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KIDs rule: regulatory phosphorylation of RTKs.
    Locascio LE; Donoghue DJ
    Trends Biochem Sci; 2013 Feb; 38(2):75-84. PubMed ID: 23312584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases.
    Ostman A; Böhmer FD
    Trends Cell Biol; 2001 Jun; 11(6):258-66. PubMed ID: 11356362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical-chemical principles underlying RTK activation, and their implications for human disease.
    He L; Hristova K
    Biochim Biophys Acta; 2012 Apr; 1818(4):995-1005. PubMed ID: 21840295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and forster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands.
    Li E; You M; Hristova K
    Biochemistry; 2005 Jan; 44(1):352-60. PubMed ID: 15628877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor tyrosine kinases: from biology to pathology.
    Choura M; Rebaï A
    J Recept Signal Transduct Res; 2011 Dec; 31(6):387-94. PubMed ID: 22040163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallels and Distinctions in FGFR, VEGFR, and EGFR Mechanisms of Transmembrane Signaling.
    Sarabipour S
    Biochemistry; 2017 Jun; 56(25):3159-3173. PubMed ID: 28621531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.