BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

941 related articles for article (PubMed ID: 16700563)

  • 1. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding.
    Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE
    Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization.
    Saravanan R; Mohanram H; Joshi M; Domadia PN; Torres J; Ruedl C; Bhattacharjya S
    Biochim Biophys Acta; 2012 Jul; 1818(7):1613-24. PubMed ID: 22464970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds.
    Rao AG
    Arch Biochem Biophys; 1999 Jan; 361(1):127-34. PubMed ID: 9882437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action mechanism of tachyplesin I and effects of PEGylation.
    Imura Y; Nishida M; Ogawa Y; Takakura Y; Matsuzaki K
    Biochim Biophys Acta; 2007 May; 1768(5):1160-9. PubMed ID: 17320042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of disulfide connectivity on structure and antimicrobial activity of tachyplesin I.
    Shi J; So LY; Chen F; Liang J; Chow HY; Wong KY; Wan S; Jiang T; Yu R
    J Pept Sci; 2018 Jun; 24(6):e3087. PubMed ID: 29870123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers.
    Zhang L; Scott MG; Yan H; Mayer LD; Hancock RE
    Biochemistry; 2000 Nov; 39(47):14504-14. PubMed ID: 11087404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR.
    Doherty T; Waring AJ; Hong M
    Biochemistry; 2008 Jan; 47(4):1105-16. PubMed ID: 18163648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers.
    Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F
    Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of salt-insensitive glycine-rich antimicrobial peptides with cyclic tricystine structures.
    Tam JP; Lu YA; Yang JL
    Biochemistry; 2000 Jun; 39(24):7159-69. PubMed ID: 10852714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of an antimicrobial peptide, tachyplesin I, with lipid membranes.
    Matsuzaki K; Fukui M; Fujii N; Miyajima K
    Biochim Biophys Acta; 1991 Nov; 1070(1):259-64. PubMed ID: 1751532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog.
    Matsuzaki K; Yoneyama S; Fujii N; Miyajima K; Yamada K; Kirino Y; Anzai K
    Biochemistry; 1997 Aug; 36(32):9799-806. PubMed ID: 9245412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum.
    Bagheri M; Beyermann M; Dathe M
    Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of tachyplesin I from Tachypleus tridentatus when interacting with lipid matrices.
    Park NG; Lee S; Oishi O; Aoyagi H; Iwanaga S; Yamashita S; Ohno M
    Biochemistry; 1992 Dec; 31(48):12241-7. PubMed ID: 1457421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR.
    Doherty T; Waring AJ; Hong M
    Biochemistry; 2006 Nov; 45(44):13323-30. PubMed ID: 17073453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties.
    Vernen F; Harvey PJ; Dias SA; Veiga AS; Huang YH; Craik DJ; Lawrence N; Troeira Henriques S
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31455019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of PEGylation on the binding interaction of magainin 2 and tachyplesin I with lipid bilayer surface.
    Han E; Lee H
    Langmuir; 2013 Nov; 29(46):14214-21. PubMed ID: 24160865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural effects of tachyplesin I and its linear derivative on their aggregation and mobility in lipid bilayers.
    Han E; Lee H
    J Mol Graph Model; 2015 Jun; 59():123-8. PubMed ID: 25978805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR.
    Doherty T; Waring AJ; Hong M
    Biochim Biophys Acta; 2006 Sep; 1758(9):1285-91. PubMed ID: 16678119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide.
    Kushibiki T; Kamiya M; Aizawa T; Kumaki Y; Kikukawa T; Mizuguchi M; Demura M; Kawabata S; Kawano K
    Biochim Biophys Acta; 2014 Mar; 1844(3):527-34. PubMed ID: 24389234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.