These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 16700619)
1. Neuro-oncological applications of optical spectroscopy. Toms SA; Konrad PE; Lin WC; Weil RJ Technol Cancer Res Treat; 2006 Jun; 5(3):231-8. PubMed ID: 16700619 [TBL] [Abstract][Full Text] [Related]
2. Role of optical spectroscopic methods in neuro-oncological sciences. Bahreini M J Lasers Med Sci; 2015; 6(2):51-61. PubMed ID: 25987969 [TBL] [Abstract][Full Text] [Related]
3. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity. Toms SA; Lin WC; Weil RJ; Johnson MD; Jansen ED; Mahadevan-Jansen A Neurosurgery; 2005 Oct; 57(4 Suppl):382-91; discussion 382-91. PubMed ID: 16234690 [TBL] [Abstract][Full Text] [Related]
4. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy. Evers Dj; Hendriks B; Lucassen G; Ruers T Future Oncol; 2012 Mar; 8(3):307-20. PubMed ID: 22409466 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Müller MG; Valdez TA; Georgakoudi I; Backman V; Fuentes C; Kabani S; Laver N; Wang Z; Boone CW; Dasari RR; Shapshay SM; Feld MS Cancer; 2003 Apr; 97(7):1681-92. PubMed ID: 12655525 [TBL] [Abstract][Full Text] [Related]
6. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M; Kolios MC; Tavakkoli J Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408 [TBL] [Abstract][Full Text] [Related]
8. Models of light propagation in human tissue applied to cancer diagnostics. Wilson RH; Mycek MA Technol Cancer Res Treat; 2011 Apr; 10(2):121-34. PubMed ID: 21381790 [TBL] [Abstract][Full Text] [Related]
9. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection. Perelman LT Expert Rev Med Devices; 2006 Nov; 3(6):787-803. PubMed ID: 17280544 [TBL] [Abstract][Full Text] [Related]
10. Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. Bydlon TM; Nachabé R; Ramanujam N; Sterenborg HJ; Hendriks BH J Biophotonics; 2015 Jan; 8(1-2):9-24. PubMed ID: 24760790 [TBL] [Abstract][Full Text] [Related]
11. Optical spectroscopy for detection of neoplasia. Sokolov K; Follen M; Richards-Kortum R Curr Opin Chem Biol; 2002 Oct; 6(5):651-8. PubMed ID: 12413550 [TBL] [Abstract][Full Text] [Related]
12. Quantitative optical spectroscopy for tissue diagnosis. Richards-Kortum R; Sevick-Muraca E Annu Rev Phys Chem; 1996; 47():555-606. PubMed ID: 8930102 [TBL] [Abstract][Full Text] [Related]
13. Intraoperative brain cancer detection with Raman spectroscopy in humans. Jermyn M; Mok K; Mercier J; Desroches J; Pichette J; Saint-Arnaud K; Bernstein L; Guiot MC; Petrecca K; Leblond F Sci Transl Med; 2015 Feb; 7(274):274ra19. PubMed ID: 25673764 [TBL] [Abstract][Full Text] [Related]
14. Biophotonics techniques for structural and functional imaging, in vivo. Ardeshirpour Y; Gandjbakhche AH; Najafizadeh L Stud Health Technol Inform; 2013; 185():265-97. PubMed ID: 23542939 [TBL] [Abstract][Full Text] [Related]
15. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Gebhart SC; Lin WC; Mahadevan-Jansen A Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842 [TBL] [Abstract][Full Text] [Related]