These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16701550)

  • 1. Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin.
    Kumamoto N; Matsuzaki S; Inoue K; Hattori T; Shimizu S; Hashimoto R; Yamatodani A; Katayama T; Tohyama M
    Biochem Biophys Res Commun; 2006 Jun; 345(2):904-9. PubMed ID: 16701550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain.
    Weickert CS; Straub RE; McClintock BW; Matsumoto M; Hashimoto R; Hyde TM; Herman MM; Weinberger DR; Kleinman JE
    Arch Gen Psychiatry; 2004 Jun; 61(6):544-55. PubMed ID: 15184234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bdnf gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro.
    Volpicelli F; Caiazzo M; Greco D; Consales C; Leone L; Perrone-Capano C; Colucci D'Amato L; di Porzio U
    J Neurochem; 2007 Jul; 102(2):441-53. PubMed ID: 17506860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the time courses of selective gene expression and dopaminergic depletion induced by MPP+ in MN9D cells.
    Wang J; Duhart HM; Xu Z; Patterson TA; Newport GD; Ali SF
    Neurochem Int; 2008 May; 52(6):1037-43. PubMed ID: 18069091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction of Dysbindin with the AP-3 complex via its mu subunit.
    Taneichi-Kuroda S; Taya S; Hikita T; Fujino Y; Kaibuchi K
    Neurochem Int; 2009 Jun; 54(7):431-8. PubMed ID: 19428785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research.
    Talbot K
    Prog Brain Res; 2009; 179():87-94. PubMed ID: 20302821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysbindin engages in c-Jun N-terminal kinase activity and cytoskeletal organization.
    Kubota K; Kumamoto N; Matsuzaki S; Hashimoto R; Hattori T; Okuda H; Takamura H; Takeda M; Katayama T; Tohyama M
    Biochem Biophys Res Commun; 2009 Feb; 379(2):191-5. PubMed ID: 19094965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein.
    Hikita T; Taya S; Fujino Y; Taneichi-Kuroda S; Ohta K; Tsuboi D; Shinoda T; Kuroda K; Funahashi Y; Uraguchi-Asaki J; Hashimoto R; Kaibuchi K
    J Neurochem; 2009 Sep; 110(5):1567-74. PubMed ID: 19573021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VIP is a transcriptional target of Nurr1 in dopaminergic cells.
    Luo Y; Henricksen LA; Giuliano RE; Prifti L; Callahan LM; Federoff HJ
    Exp Neurol; 2007 Jan; 203(1):221-32. PubMed ID: 16999955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysbindin-1 and NRG-1 gene expression in immortalized lymphocytes from patients with schizophrenia.
    Yamamori H; Hashimoto R; Verrall L; Yasuda Y; Ohi K; Fukumoto M; Umeda-Yano S; Ito A; Takeda M
    J Hum Genet; 2011 Jul; 56(7):478-83. PubMed ID: 21512575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High dopamine turnover in the brains of Sandy mice.
    Murotani T; Ishizuka T; Hattori S; Hashimoto R; Matsuzaki S; Yamatodani A
    Neurosci Lett; 2007 Jun; 421(1):47-51. PubMed ID: 17548156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NCAM and polysialyltransferase profiles match dopaminergic marker gene expression but polysialic acid is dispensable for development of the midbrain dopamine system.
    Schiff M; Weinhold B; Grothe C; Hildebrandt H
    J Neurochem; 2009 Sep; 110(5):1661-73. PubMed ID: 19619134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons.
    Teh CH; Loh CC; Lam KK; Loo JM; Yan T; Lim TM
    J Neurosci Res; 2007 Jun; 85(8):1762-73. PubMed ID: 17457889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Risk genes for schizophrenia and neuronal plasticity: molecular target for antipsychotic discovery].
    Hashimoto R; Yasuda Y; Ohi K; Fukumoto M; Yamamori H; Takeda M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2010 Jun; 30(3):103-7. PubMed ID: 20666140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.
    Hattori S; Murotani T; Matsuzaki S; Ishizuka T; Kumamoto N; Takeda M; Tohyama M; Yamatodani A; Kunugi H; Hashimoto R
    Biochem Biophys Res Commun; 2008 Aug; 373(2):298-302. PubMed ID: 18555792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain differences in the effects of adrenalectomy on the midbrain dopamine system: implication for behavioral sensitization to cocaine.
    de Jong IE; Steenbergen PJ; de Kloet ER
    Neuroscience; 2008 May; 153(3):594-604. PubMed ID: 18420350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bak Foong protects dopaminergic neurons against MPTP-induced neurotoxicity by its anti-apoptotic activity.
    Liu B; Xie JX; Tsang LL; Rowlands DK; Ho LS; Gou YL; Chung YW; Chan HC
    Cell Biol Int; 2008 Jan; 32(1):86-92. PubMed ID: 17920944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain.
    Chadi G; Silva C; Maximino JR; Fuxe K; da Silva GO
    Brain Res; 2008 Jan; 1190():23-38. PubMed ID: 18086466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional alterations of the nigrostriatal dopamine system in estrogen receptor-alpha knockout (ERKO) mice.
    Küppers E; Krust A; Chambon P; Beyer C
    Psychoneuroendocrinology; 2008 Jul; 33(6):832-8. PubMed ID: 18472350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development.
    Janhunen S; Ahtee L
    Neurosci Biobehav Rev; 2007; 31(3):287-314. PubMed ID: 17141870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.