These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 16701812)
1. HA/alginate hybrid composites prepared through bio-inspired nucleation. Tampieri A; Sandri M; Landi E; Celotti G; Roveri N; Mattioli-Belmonte M; Virgili L; Gabbanelli F; Biagini G Acta Biomater; 2005 May; 1(3):343-51. PubMed ID: 16701812 [TBL] [Abstract][Full Text] [Related]
2. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900 [TBL] [Abstract][Full Text] [Related]
3. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Han J; Zhou Z; Yin R; Yang D; Nie J Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
5. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Turco G; Marsich E; Bellomo F; Semeraro S; Donati I; Brun F; Grandolfo M; Accardo A; Paoletti S Biomacromolecules; 2009 Jun; 10(6):1575-83. PubMed ID: 19348419 [TBL] [Abstract][Full Text] [Related]
6. Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: bio-inspired for sequential nucleation and growth. Amer W; Abdelouahdi K; Ramananarivo HR; Fihri A; El Achaby M; Zahouily M; Barakat A; Djessas K; Clark J; Solhy A Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():341-6. PubMed ID: 24411386 [TBL] [Abstract][Full Text] [Related]
7. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552 [TBL] [Abstract][Full Text] [Related]
8. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556 [TBL] [Abstract][Full Text] [Related]
9. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid. Ilie A; Ghiţulică C; Andronescu E; Cucuruz A; Ficai A Int J Pharm; 2016 Aug; 510(2):501-7. PubMed ID: 26784979 [TBL] [Abstract][Full Text] [Related]
10. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration. Kim M; Jung WK; Kim G Bioprocess Biosyst Eng; 2013 Nov; 36(11):1725-34. PubMed ID: 23584739 [TBL] [Abstract][Full Text] [Related]
11. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Boanini E; Torricelli P; Gazzano M; Giardino R; Bigi A Biomaterials; 2006 Sep; 27(25):4428-33. PubMed ID: 16682075 [TBL] [Abstract][Full Text] [Related]
12. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. Tampieri A; Celotti G; Landi E; Sandri M; Roveri N; Falini G J Biomed Mater Res A; 2003 Nov; 67(2):618-25. PubMed ID: 14566805 [TBL] [Abstract][Full Text] [Related]
13. The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties. Broderick E; Lyons H; Pembroke T; Byrne H; Murray B; Hall M J Colloid Interface Sci; 2006 Jun; 298(1):154-61. PubMed ID: 16414061 [TBL] [Abstract][Full Text] [Related]
14. Effects of strontium on the physicochemical characteristics of hydroxyapatite. Verberckmoes SC; Behets GJ; Oste L; Bervoets AR; Lamberts LV; Drakopoulos M; Somogyi A; Cool P; Dorriné W; De Broe ME; D'Haese PC Calcif Tissue Int; 2004 Nov; 75(5):405-15. PubMed ID: 15592797 [TBL] [Abstract][Full Text] [Related]
16. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Zhang J; Wang Q; Wang A Acta Biomater; 2010 Feb; 6(2):445-54. PubMed ID: 19596091 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication. Tian XY; Li MG; Cao N; Li JW; Chen XB Biofabrication; 2009 Dec; 1(4):045005. PubMed ID: 20811114 [TBL] [Abstract][Full Text] [Related]
18. Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry. Lim SF; Zheng YM; Zou SW; Chen JP J Colloid Interface Sci; 2009 May; 333(1):33-9. PubMed ID: 19223042 [TBL] [Abstract][Full Text] [Related]
19. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
20. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]