BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 16701819)

  • 1. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning.
    Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG
    Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.
    Kidoaki S; Kwon IK; Matsuda T
    Biomaterials; 2005 Jan; 26(1):37-46. PubMed ID: 15193879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential.
    Kwon IK; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.
    Bashur CA; Dahlgren LA; Goldstein AS
    Biomaterials; 2006 Nov; 27(33):5681-8. PubMed ID: 16914196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.
    Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI
    Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response.
    Koegler WS; Griffith LG
    Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material.
    Ito Y; Hasuda H; Kamitakahara M; Ohtsuki C; Tanihara M; Kang IK; Kwon OH
    J Biosci Bioeng; 2005 Jul; 100(1):43-9. PubMed ID: 16233849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model.
    McManus MC; Boland ED; Simpson DG; Barnes CP; Bowlin GL
    J Biomed Mater Res A; 2007 May; 81(2):299-309. PubMed ID: 17120217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun protein fibers as matrices for tissue engineering.
    Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI
    Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of cell adhesion on aligned micro- and nanofibers.
    Tian F; Hosseinkhani H; Hosseinkhani M; Khademhosseini A; Yokoyama Y; Estrada GG; Kobayashi H
    J Biomed Mater Res A; 2008 Feb; 84(2):291-9. PubMed ID: 17607759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers.
    Sun T; Norton D; McKean RJ; Haycock JW; Ryan AJ; MacNeil S
    Biotechnol Bioeng; 2007 Aug; 97(5):1318-28. PubMed ID: 17171721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.