BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16701833)

  • 1. Hydroxyapatite coating of cellulose sponge does not improve its osteogenic potency in rat bone.
    Ekholm E; Tommila M; Forsback AP; Märtson M; Holmbom J; Aäritalo V; Finnberg C; Kuusilehto A; Salonen J; Yli-Urpo A; Penttinen R
    Acta Biomater; 2005 Sep; 1(5):535-44. PubMed ID: 16701833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats.
    Tommila M; Jokinen J; Wilson T; Forsback AP; Saukko P; Penttinen R; Ekholm E
    Acta Biomater; 2008 Mar; 4(2):354-61. PubMed ID: 17845867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants.
    Schnettler R; Pfefferle HJ; Kilian O; Heiss C; Kreuter J; Lommel D; Pavlidis T; Stahl JP; Meyer C; Wenisch S; Alt V
    J Control Release; 2005 Aug; 106(1-2):154-61. PubMed ID: 15936110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material.
    Holmbom J; Södergård A; Ekholm E; Märtson M; Kuusilehto A; Saukko P; Penttinen R
    J Biomed Mater Res A; 2005 Nov; 75(2):308-15. PubMed ID: 16059893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.
    Li X; Huang J; Ahmad Z; Edirisinghe M
    Biomed Mater Eng; 2007; 17(6):335-46. PubMed ID: 18032815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone growth into a ceramic-filled defect around an implant. The response to transforming growth factor beta1.
    Clarke SA; Brooks RA; Lee PT; Rushton N
    J Bone Joint Surg Br; 2004 Jan; 86(1):126-34. PubMed ID: 14765880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite.
    Suzuki O; Kamakura S; Katagiri T; Nakamura M; Zhao B; Honda Y; Kamijo R
    Biomaterials; 2006 May; 27(13):2671-81. PubMed ID: 16413054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental study on the osseointegration of nanophase hydroxyapatite biograde-coated implants].
    Wang Y; Tan YB; Yang QM; Deng LF; Zeng SX
    Zhonghua Wai Ke Za Zhi; 2005 Oct; 43(20):1336-9. PubMed ID: 16271248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained release of OP-1 and antibiotics in treatment of femoral defects in male rats.
    Dzugan S; Galjour C; Conflitti J; Benghuzzi H; Tucci M; Russell G; Tsao A
    Biomed Sci Instrum; 2005; 41():80-5. PubMed ID: 15850086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering.
    Chim H; Hutmacher DW; Chou AM; Oliveira AL; Reis RL; Lim TC; Schantz JT
    Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osseointegration of alumina with a bioactive coating under load-bearing and unloaded conditions.
    Ignatius A; Peraus M; Schorlemmer S; Augat P; Burger W; Leyen S; Claes L
    Biomaterials; 2005 May; 26(15):2325-32. PubMed ID: 15585235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled structures of hydroxyapatite in the biomimetic coating on a bioinert ceramic substrate.
    Chakraborty J; Sarkar SD; Chatterjee S; Sinha MK; Basu D
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):295-8. PubMed ID: 18693089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle.
    Kondo N; Ogose A; Tokunaga K; Ito T; Arai K; Kudo N; Inoue H; Irie H; Endo N
    Biomaterials; 2005 Oct; 26(28):5600-8. PubMed ID: 15878364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute.
    Bera T; Vivek AN; Saraf SK; Ramachandrarao P
    Biomed Mater; 2008 Jun; 3(2):025001. PubMed ID: 18458374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction.
    Yoshida A; Miyazaki T; Ashizuka M; Ishida E
    J Biomater Appl; 2006 Oct; 21(2):179-94. PubMed ID: 16443626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of osteogenic growth factors on bone growth into a ceramic filled defect around an implant.
    Clarke SA; Brooks RA; Lee PT; Rushton N
    J Orthop Res; 2004 Sep; 22(5):1016-24. PubMed ID: 15304274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced bone regeneration by electrical polarization of hydroxyapatite.
    Itoh S; Nakamura S; Nakamura M; Shinomiya K; Yamashita K
    Artif Organs; 2006 Nov; 30(11):863-9. PubMed ID: 17062109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and in vitro behavior of hydroxyapatite coatings prepared by electrostatic spray assisted vapor deposition method.
    Hou X; Choy KL; Leach SE
    J Biomed Mater Res A; 2007 Dec; 83(3):683-91. PubMed ID: 17530629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.