BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16701835)

  • 1. Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres.
    Abou Neel EA; Ahmed I; Blaker JJ; Bismarck A; Boccaccini AR; Lewis MP; Nazhat SN; Knowles JC
    Acta Biomater; 2005 Sep; 1(5):553-63. PubMed ID: 16701835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering.
    Ahmed I; Collins CA; Lewis MP; Olsen I; Knowles JC
    Biomaterials; 2004 Jul; 25(16):3223-32. PubMed ID: 14980417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of antibacterial copper releasing degradable phosphate glass fibres.
    Neel EA; Ahmed I; Pratten J; Nazhat SN; Knowles JC
    Biomaterials; 2005 May; 26(15):2247-54. PubMed ID: 15585226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of anion and cation release from a range of ternary phosphate-based glasses with fixed 45 mol% P2O5.
    Ahmed I; Lewis MP; Nazhat SN; Knowles JC
    J Biomater Appl; 2005 Jul; 20(1):65-80. PubMed ID: 15972364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct.
    Shah R; Sinanan AC; Knowles JC; Hunt NP; Lewis MP
    Biomaterials; 2005 May; 26(13):1497-505. PubMed ID: 15522751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses.
    Abou Neel EA; Chrzanowski W; Knowles JC
    Acta Biomater; 2008 May; 4(3):523-34. PubMed ID: 18249043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites.
    Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I
    J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.
    Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN
    Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-phosphate glass fiber scaffolds for the hard-soft interface regeneration: the effect of fiber diameter and flow culture condition on cell survival and differentiation.
    Bitar M; Salih V; Knowles JC; Lewis MP
    J Biomed Mater Res A; 2008 Dec; 87(4):1017-26. PubMed ID: 18257069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system.
    Ahmed I; Lewis M; Olsen I; Knowles JC
    Biomaterials; 2004 Feb; 25(3):501-7. PubMed ID: 14585699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations.
    Shah Mohammadi M; Ahmed I; Marelli B; Rudd C; Bureau MN; Nazhat SN
    Acta Biomater; 2010 Aug; 6(8):3157-68. PubMed ID: 20206722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.
    Mohammadi MS; Ahmed I; Muja N; Rudd CD; Bureau MN; Nazhat SN
    J Mater Sci Mater Med; 2011 Dec; 22(12):2659-72. PubMed ID: 22002512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses.
    Abou Neel EA; Mizoguchi T; Ito M; Bitar M; Salih V; Knowles JC
    Biomaterials; 2007 Jul; 28(19):2967-77. PubMed ID: 17412416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5.
    Sharmin N; Parsons AJ; Rudd CD; Ahmed I
    J Biomater Appl; 2014 Nov; 29(5):639-53. PubMed ID: 24939962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system.
    Ahmed I; Lewis M; Olsen I; Knowles JC
    Biomaterials; 2004 Feb; 25(3):491-9. PubMed ID: 14585698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-containing phosphate-based glasses for tissue engineering.
    Salih V; Patel A; Knowles JC
    Biomed Mater; 2007 Mar; 2(1):11-20. PubMed ID: 18458428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation.
    Brauer DS; Rüssel C; Li W; Habelitz S
    J Biomed Mater Res A; 2006 May; 77(2):213-9. PubMed ID: 16392127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation properties and ion release characteristics of Resilon and phosphate glass/polycaprolactone composites.
    Borbely P; Gulabivala K; Knowles JC
    Int Endod J; 2008 Dec; 41(12):1093-100. PubMed ID: 19133099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.