These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 16701851)

  • 1. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-memory NiTi foams produced by replication of NaCl space-holders.
    Bansiddhi A; Dunand DC
    Acta Biomater; 2008 Nov; 4(6):1996-2007. PubMed ID: 18678532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy.
    Prymak O; Bogdanski D; Köller M; Esenwein SA; Muhr G; Beckmann F; Donath T; Assad M; Epple M
    Biomaterials; 2005 Oct; 26(29):5801-7. PubMed ID: 15949545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds.
    Liu X; Wu S; Yeung KW; Chan YL; Hu T; Xu Z; Liu X; Chung JC; Cheung KM; Chu PK
    Biomaterials; 2011 Jan; 32(2):330-8. PubMed ID: 20869110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi.
    Wu S; Liu X; Chan YL; Ho JP; Chung CY; Chu PK; Chu CL; Yeung KW; Lu WW; Cheung KM; Luk KD
    J Biomed Mater Res A; 2007 Jun; 81(4):948-55. PubMed ID: 17252548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-memory NiTi with two-dimensional networks of micro-channels.
    Neurohr AJ; Dunand DC
    Acta Biomater; 2011 Apr; 7(4):1862-72. PubMed ID: 21130189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic properties of alternative versus single-stranded leveling archwires.
    Rucker BK; Kusy RP
    Am J Orthod Dentofacial Orthop; 2002 Nov; 122(5):528-41. PubMed ID: 12439482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on new superelastic NiTi orthodontic wire. (Part 1) Tensile and bend test (author's transl)].
    Watanabe K
    Shika Rikogaku Zasshi; 1982 Jan; 23(61):47-57. PubMed ID: 6951898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation behavior, chemical composition, surface topography and bending properties of five selected 0.016" x 0.022" NiTi archwires.
    Fischer-Brandies H; Es-Souni M; Kock N; Raetzke K; Bock O
    J Orofac Orthop; 2003 Mar; 64(2):88-99. PubMed ID: 12649705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure, nickel suppression and mechanical characteristics of electropolished and photoelectrocatalytically oxidized biomedical nickel titanium shape memory alloy.
    Chu CL; Guo C; Sheng XB; Dong YS; Lin PH; Yeung KW; Chu PK
    Acta Biomater; 2009 Jul; 5(6):2238-45. PubMed ID: 19251496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium with aligned, elongated pores for orthopedic tissue engineering applications.
    Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI
    J Biomed Mater Res A; 2008 Feb; 84(2):402-12. PubMed ID: 17618479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.
    Jian YT; Yang Y; Tian T; Stanford C; Zhang XP; Zhao K
    PLoS One; 2015; 10(6):e0128138. PubMed ID: 26047515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
    Hao YL; Li SJ; Sun SY; Zheng CY; Yang R
    Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression fatigue behavior of laser processed porous NiTi alloy.
    Bernard S; Krishna Balla V; Bose S; Bandyopadhyay A
    J Mech Behav Biomed Mater; 2012 Sep; 13():62-8. PubMed ID: 22842276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.