BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16701853)

  • 1. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments.
    Weber LM; He J; Bradley B; Haskins K; Anseth KS
    Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking hypoxic signaling within encapsulated cell aggregates.
    Skiles ML; Sahai S; Blanchette JO
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides.
    Weber LM; Hayda KN; Haskins K; Anseth KS
    Biomaterials; 2007 Jul; 28(19):3004-11. PubMed ID: 17391752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.
    Weaver JD; Headen DM; Hunckler MD; Coronel MM; Stabler CL; GarcĂ­a AJ
    Biomaterials; 2018 Jul; 172():54-65. PubMed ID: 29715595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.
    Rios PD; Zhang X; Luo X; Shea LD
    Biotechnol Bioeng; 2016 Nov; 113(11):2485-95. PubMed ID: 27159557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function.
    Lin CC; Anseth KS
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6380-5. PubMed ID: 21464290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function.
    Weber LM; Lopez CG; Anseth KS
    J Biomed Mater Res A; 2009 Sep; 90(3):720-9. PubMed ID: 18570315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.
    Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ; Tian Q; Hedrick JL; Po Hui JH; Ee PL; Yang YY
    Biomaterials; 2010 Oct; 31(28):7298-307. PubMed ID: 20615545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation.
    Xie D; Smyth CA; Eckstein C; Bilbao G; Mays J; Eckhoff DE; Contreras JL
    Biomaterials; 2005 Feb; 26(4):403-12. PubMed ID: 15275814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels.
    Arkenberg MR; Lin CC
    Biomater Sci; 2017 Oct; 5(11):2231-2240. PubMed ID: 28991963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyotomedical therapy for insulinopenic diabetes using microencapsulated pancreatic beta cell lines.
    Suzuki R; Okada N; Miyamoto H; Yoshioka T; Sakamoto K; Oka H; Tsutsumi Y; Nakagawa S; Miyazaki J; Mayumi T
    Life Sci; 2002 Aug; 71(15):1717-29. PubMed ID: 12151050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of hepatocellular function within PEG hydrogels.
    Underhill GH; Chen AA; Albrecht DR; Bhatia SN
    Biomaterials; 2007 Jan; 28(2):256-70. PubMed ID: 16979755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device.
    Skrzypek K; Barrera YB; Groth T; Stamatialis D
    Int J Artif Organs; 2018 Mar; 41(3):152-159. PubMed ID: 29546813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.
    Amer LD; Holtzinger A; Keller G; Mahoney MJ; Bryant SJ
    Acta Biomater; 2015 Aug; 22():103-10. PubMed ID: 25913222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels.
    Weber LM; Cheung CY; Anseth KS
    Cell Transplant; 2008; 16(10):1049-57. PubMed ID: 18351021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Islet encapsulation with living cells for improvement of biocompatibility.
    Teramura Y; Iwata H
    Biomaterials; 2009 Apr; 30(12):2270-5. PubMed ID: 19201021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.